问题:

  • 为什么组间方差加组内方差一定等于总方差?如何从数学上理解。PPT里有证明,引入一个中间项就行。
  • 方差分析、协方差分析和回归分析有什么联系?
  • 什么是F分布?Fisher的独创,理解不了F分布就不可能真正理解方差分析。
  • 方差分析,就是要分析方差的来源!

我们把组内方差看做是随机误差;组间差组成比较复杂:包含了随机误差、系统误差。

PPT:方差分析----单因素方差分析

回忆一下:

卡方分布就是多个标准正态分布变量平方的和,自由度是其唯一的参数。(为什么当自由度为3时,卡方分布的形状就变了,和三体问题有关吗?)

F分布就是两个不同卡方分布的比的分布,自由度是其唯一的参数(两个自由度而已)。

方差分析假设随机误差是服从正态分布的,那么我们假设组内和组间无差异,很自然就转换到了F分布。

那就连t分布一起回顾吧!t就是学生的意思,著名的t-SNE也是基于t分布的,t分布和正态分布形状基本是一样的,当t分布唯一的参数自由度大于30时,t分布就趋近于正态分布了。普通的z分布底下除的是总体标准差,t分布底下除的是样本标准差。t分布的自由度就是抽样分布中的sample size,根据中心极限定理,sample size越大,抽样分布的均值就越趋近于正态分布。【YouTube上有个视频讲得非常清楚】

原理

比较两组(小样本)就用t-test,比较三组及以上就用ANOVA。注意:我们默认说的都是one way ANOVA,也就是对group的分类标准只有一个,比如case和control(ABCD多组),two way就是分类标准有多个,比如case or control,male or femal。

方差分析的核心原理:组内方差和组间方差是否有明显的差异,用的F统计量,F分布有两个参数,也就是两个自由度参数。

方差分析会给一个总的显著性结果,及组内和组间是否有显著差异。显著了需要再做两两比较。

R实例

One-Way ANOVA Test in R

my_data <- PlantGrowth

# Show a random sample
set.seed(1234)
dplyr::sample_n(my_data, 10) # Show the levels
levels(my_data$group) my_data$group <- ordered(my_data$group,
levels = c("ctrl", "trt1", "trt2")) library(dplyr)
group_by(my_data, group) %>%
summarise(
count = n(),
mean = mean(weight, na.rm = TRUE),
sd = sd(weight, na.rm = TRUE)
) # Box plots
# ++++++++++++++++++++
# Plot weight by group and color by group
library("ggpubr")
ggboxplot(my_data, x = "group", y = "weight",
color = "group", palette = c("#00AFBB", "#E7B800", "#FC4E07"),
order = c("ctrl", "trt1", "trt2"),
ylab = "Weight", xlab = "Treatment") # Mean plots
# ++++++++++++++++++++
# Plot weight by group
# Add error bars: mean_se
# (other values include: mean_sd, mean_ci, median_iqr, ....)
library("ggpubr")
ggline(my_data, x = "group", y = "weight",
add = c("mean_se", "jitter"),
order = c("ctrl", "trt1", "trt2"),
ylab = "Weight", xlab = "Treatment") # Box plot
boxplot(weight ~ group, data = my_data,
xlab = "Treatment", ylab = "Weight",
frame = FALSE, col = c("#00AFBB", "#E7B800", "#FC4E07"))
# plotmeans
library("gplots")
plotmeans(weight ~ group, data = my_data, frame = FALSE,
xlab = "Treatment", ylab = "Weight",
main="Mean Plot with 95% CI") # Compute the analysis of variance
res.aov <- aov(weight ~ group, data = my_data)
# Summary of the analysis
summary(res.aov)

# In one-way ANOVA test, a significant p-value indicates that some of the group means are different,
# but we don’t know which pairs of groups are different.
TukeyHSD(res.aov)

进阶

HSD

general linear hypothesis tests

repalce by Pairewise t-test under BH adjust

test validity

One-Way vs Two-Way ANOVA: Differences, AssumptionsandHypotheses

方差分析 | ANOVA | 原理 | R代码 | 进阶 | one way and two way的更多相关文章

  1. Java Base64加密、解密原理Java代码

    Java Base64加密.解密原理Java代码 转自:http://blog.csdn.net/songylwq/article/details/7578905 Base64是什么: Base64是 ...

  2. Base64加密解密原理以及代码实现(VC++)

    Base64加密解密原理以及代码实现 转自:http://blog.csdn.net/jacky_dai/article/details/4698461 1. Base64使用A--Z,a--z,0- ...

  3. 机器学习之KNN原理与代码实现

    KNN原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9670187.html 1. KNN原理 K ...

  4. 机器学习之决策树三-CART原理与代码实现

    决策树系列三—CART原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9482885.html ID ...

  5. R代码展示各种统计学分布 | 生物信息学举例

    二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distr ...

  6. regression | p-value | Simple (bivariate) linear model | 线性回归 | 多重检验 | FDR | BH | R代码

    P122, 这是IQR method课的第一次作业,需要统计检验,x和y是否显著的有线性关系. Assignment 1 1) Find a small bivariate dataset (pref ...

  7. <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)

    转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更 ...

  8. 微信QQ的二维码登录原理js代码解析

    这篇文章主要大家详细解析了微信QQ的二维码登录原理js代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 在很多地方就是都出现了使用二维码登录,二维码付款,二维码账户等应用(这里的二维码种马,诈骗 ...

  9. 【R笔记】R语言进阶之4:数据整形(reshape)

    R语言进阶之4:数据整形(reshape) 2013-05-31 10:15 xxx 网易博客 字号:T | T 从不同途径得到的数据的组织方式是多种多样的,很多数据都要经过整理才能进行有效的分析,数 ...

随机推荐

  1. C语言中格式字符串

    C语言中格式字符串的一般形式为: %[标志][输出最小宽度][.精度][长度]类型, 其中方括号[]中的项为可选项. 一.类型 我们用一定的字符用以表示输出数据的类型,其格式符和意义下表所示: 字符  ...

  2. MFC消息 OnCtlColor 改变控件颜色

    OnCtlColor 有以下几个宏定义 #define CTLCOLOR_MSGBOX         0    #define CTLCOLOR_EDIT           1    #defin ...

  3. java操作对比两个字符串,将差异数据提取出来

    记录瞬间 在实际的工作中,需要解决生成两次字符串结果进行对比的问题,将存在差异的字符串直接给出来. 当然,前提是需要将对比的两次结果,进行前期处理 比如: a_str = "@com/ene ...

  4. Oracle查询临时表空间的占用

    可以使用以下语句查询是哪个session number的哪个sql占用了较大的临时表空间 select inst_id,username,session_num,sql_id,tablespace,s ...

  5. python3.*的一些笔记

    因为使用python越来越频繁,有一些细节的东西经常用后一段时间没去用就会忘记,做些简单的笔记吧. 1.break和continue和pass a = 0 while 1: a+=1 if(a%3== ...

  6. pandas nan值处理

    创建DataFrame样例数据 >>> import pandas as pd >>> import numpy as np >>> data = ...

  7. Deep Convolution Auto-encoder

    一.概念介绍 自编码器是一种执行数据压缩的网络架构,其中的压缩和解压缩功能是从数据本身学习得到的,而非人为手工设计的.自编码器的两个核心部分是编码器和解码器,它将输入数据压缩到一个潜在表示空间里面,然 ...

  8. ansible-2.1.0.0_module

    ansible --version ansible 2.1.0.0 config file = /home/onest/luoliyu/ceph-ansible/ansible.cfg configu ...

  9. linux install Openvino

    recommend centos7 github Openvino tooltiks 1. download openvino addational installation for ncs2 ncs ...

  10. 动态令牌验证遇到的问题(判断用户长按backspace键)

    因为最近负责泰康项目的前端工作,他们的登录需要进行安全验证,也就是所谓的双因素验证,即在OA平台登录过后,还需要安全部门发送安全令牌进行验证.令牌验证效果如下: 主要功能有:1.默认第一项focus. ...