Prince and Princess HDU - 4685(匹配 + 强连通)
Prince and Princess
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2336 Accepted Submission(s): 695
For all princes,give all the princesses that they love. So, there is a maximum number of pairs of prince and princess that can marry.
Now for each prince, your task is to output all the princesses he can marry. Of course if a prince wants to marry one of those princesses,the maximum number of marriage pairs of the rest princes and princesses cannot change.
For each test case, the first line contains two integers n and m (1<=n,m<=500), means the number of prince and princess.
Then n lines for each prince contain the list of the princess he loves. Each line starts with a integer ki(0<=ki<=m), and then ki different integers, ranging from 1 to m denoting the princesses.
Then output n lines. For each prince, first print li, the number of different princess he can marry so that the rest princes and princesses can still get the maximum marriage number.
After that print li different integers denoting those princesses,in ascending order.
4 4
2 1 2
2 1 2
2 2 3
2 3 4
1 2
2 1 2
2 1 2
2 1 2
1 3
1 4
Case #2:
2 1 2
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, maxm = ;
int n, m, s, t;
int head[maxn], cur[maxn], vis[maxn], d[maxn], cnt, nex[maxm << ], nex2[maxm << ];
int head2[maxn], cnt2;
int vis1[maxn], vis2[maxn]; struct node
{
int u, v, c, flag;
}Node[maxm << ], Edge[maxm << ]; void add_(int u, int v, int c, int flag)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
Node[cnt].flag = flag;
nex[cnt] = head[u];
head[u] = cnt++;
} void add(int u, int v, int c)
{
add_(u, v, c, );
add_(v, u, , );
} void add2(int u, int v)
{
Edge[cnt2].u = u;
Edge[cnt2].v = v;
nex2[cnt2] = head2[u];
head2[u] = cnt2++;
} bool bfs()
{
queue<int> Q;
mem(d, );
Q.push(s);
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = head[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(!d[v] && Node[i].c > )
{
d[v] = d[u] + ;
Q.push(v);
if(v == t) return ;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = ;
if(u == t || cap == )
return cap;
for(int &i = cur[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] == d[u] + && Node[i].c > )
{
int V = dfs(v, min(cap, Node[i].c));
Node[i].c -= V;
Node[i ^ ].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
if(cap > ) d[u] = -;
return ret;
} int Dinic()
{
int ans = ;
while(bfs())
{
memcpy(cur, head, sizeof head);
ans += dfs(s, INF);
}
return ans;
} int pre[maxn], low[maxn], sccno[maxn], dfs_clock, scc_cnt;
stack<int> S; void dfs(int u)
{
pre[u] = low[u] = ++dfs_clock;
S.push(u);
for(int i = head2[u]; i != -; i = nex2[i])
{
int v = Edge[i].v;
if(!pre[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v])
low[u] = min(low[u], pre[v]);
}
if(low[u] == pre[u])
{
scc_cnt++;
for(;;)
{
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
int G[maxn], ans;
int main()
{
int T;
int kase = ;
rd(T);
while(T--)
{
mem(head, -), mem(head2, -);
mem(vis1, ), mem(vis2, );
cnt = cnt2 = ;
rd(n), rd(m);
s = , t = maxn - ;
bool flag = ;
int tmp, u, v;
int x = max(n, m);
for(int i = ; i <= n; i++)
{
add(s, i, );
rd(tmp);
for(int j = ; j <= tmp; j++)
{
rd(v);
add(i, x + v, );
add2(i, x + v);
}
}
for(int i = ; i <= m; i++) add(x + i, t, );
int max_cnt = Dinic(); int mx = x * ;
for(int i = ; i <= m - max_cnt; i++)
{
mx++;
add(s, mx, );
for(int j = ; j <= m; j++)
add(mx, x + j, ), add2(mx, x + j);
}
for(int i = ; i <= n - max_cnt; i++)
{
mx++;
add(mx, t, );
for(int j = ; j <= n; j++)
add(j, mx, ), add2(j, mx);
}
Dinic();
for(int i = ; i < cnt; i++)
{
if(!Node[i].flag || Node[i].u == s || Node[i].v == t || Node[i].c != ) continue;
add2(Node[i].v, Node[i].u);
}
dfs_clock = scc_cnt = ;
mem(sccno, );
mem(pre, );
for(int i = ; i <= mx; i++)
if(!pre[i]) dfs(i);
printf("Case #%d:\n", ++kase);
for(int i = ; i <= n; i++)
{
ans = ;
for(int j = head2[i]; j != -; j = nex2[j])
{
int v = Edge[j].v;
if(sccno[i] == sccno[v] && v - x <= m)
G[ans++] = v;
}
sort(G, G + ans);
printf("%d", ans);
for(int j = ; j < ans; j++)
{
printf(" ");
printf("%d", G[j] - x);
} printf("\n"); } } return ;
}
Prince and Princess HDU - 4685(匹配 + 强连通)的更多相关文章
- H - Prince and Princess - HDU 4685(二分匹配+强连通分量)
题意:有N个王子M个公主,王子喜欢一些公主,而且只能是王子喜欢的人,他们才可以结婚,现在让他们尽可能多的结婚的前提下找出来每个王子都可以和谁结婚. 分析:先求出来他们的最大匹配,因为给的数据未必是完备 ...
- hdu 4685(匹配+强连通分量)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 思路:想了好久,终于想明白了,懒得写了,直接copy大牛的思路了,写的非常好! 做法是先求一次最 ...
- HDU4685:Prince and Princess(二分图匹配+tarjan)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- HDU 4685 Prince and Princess(二分匹配+强联通分量)
题意:婚配问题,但是题目并不要求输出最大匹配值,而是让我们输出,一个王子可以与哪些王妃婚配而不影响最大匹配值. 解决办法:先求一次最大匹配,如果有两个已经匹配的王妃,喜欢她们两个的有两个或者以上相同的 ...
- HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- HDU 4685 Prince and Princess 二分图匹配+tarjan
Prince and Princess 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 Description There are n pri ...
- 强连通+二分匹配(hdu4685 Prince and Princess)
Prince and Princess Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Othe ...
- POJ 1904 HDU 4685
这两道题差不多,POJ这道我很久以前就做过,但是比赛的时候居然没想起来.. POJ 这道题的题意是,N个王子每个人都有喜欢的公主,当他们选定一个公主结婚时,必须是的剩下的人也能找到他喜欢的公主结婚. ...
- UVA - 10635 Prince and Princess LCS转LIS
题目链接: http://bak.vjudge.net/problem/UVA-10635 Prince and Princess Time Limit: 3000MS 题意 给你两个数组,求他们的最 ...
随机推荐
- Vue-指令
1. v-text:这个指令用于将vue实例中的data内的属性渲染到标签内.有两种写法: 1. `<div v-text="数据"></div>`:该写法 ...
- AEAI HR开源人力资源管理v1.6.0发版公告
1 升级说明 AEAI HR v1.6.0版是AEAI HR v1.5.2版人力资源管理系统的升级版本,本次升级的系统是基于AEAI DP 3.8.0_20170228进行打包部署的,升级内容主要是针 ...
- 从零学习Fluter(五):Flutter中手势滑动拖动已经网络请求
从六号开始搞Flutter,到今天写这篇blog已经过了4天时间,文档初步浏览了一遍,写下了这个demo.demo源码分享在github上,现在对flutter有种说不出的喜欢了.大家一起搞吧! 废话 ...
- IDEA修改Git账户和密码
找到c盘中git目录的.gitconfig文件可以直接修改name和邮箱
- Android注解神器 ButterKnife框架
前言: 本人是一个只有几个月工作经验的码小渣.这是我写的第一篇博客,如有不足之处还请大家不要介意,还请大佬可以指出问题. 在这几个月的实战开发中自己也遇到了很多问题,真的是举步艰难啊!!! 在实战开发 ...
- 2019Java查漏补缺(二)
查看了公众号:java之间的整理的集和文章,文章地址 总结和搜索了一下网络知识,总结了一下: 1.String 的hashcode()方法 2.switch总结: 3.如何实现克隆 1.String ...
- 用canvas给视频图片添加特效
Canvas制作视频图片特效 1. Canvas介绍 1.1Canvas是html5上的一个画布标签,功能有点类似java的swing.可以在canvas上画线条 弧线, 文字 就是画布的功能. 具体 ...
- mssql sqlserver 索引专题
摘要: 下文将详细讲述sql server 索引的相关知识,如下所示: 实验环境: sql server 2008 R2 sqlserver索引简介: mssql sqlsever 索引分类简介 ms ...
- 高德地图 Service 创建服务 USERKEY_PLAT_NOMATCH
在使用高的地图 创建服务的时候 { "errmsg": "USERKEY_PLAT_NOMATCH", "errcode": 10009, ...
- SSH鞋贸商城的设计与实现
目录 应用技术 需求分析 总体设计 项目UI展示 一.应用技术 ①SSH SSH是 struts+spring+hibernate的一个集成框架,是目前比较流行的一种Web应用程序开源框架.区别于 S ...