Prince and Princess

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2336    Accepted Submission(s): 695

Problem Description
There are n princes and m princesses. Princess can marry any prince. But prince can only marry the princess they DO love.
For all princes,give all the princesses that they love. So, there is a maximum number of pairs of prince and princess that can marry.
Now for each prince, your task is to output all the princesses he can marry. Of course if a prince wants to marry one of those princesses,the maximum number of marriage pairs of the rest princes and princesses cannot change.
 
Input
The first line of the input contains an integer T(T<=25) which means the number of test cases.
For each test case, the first line contains two integers n and m (1<=n,m<=500), means the number of prince and princess.
Then n lines for each prince contain the list of the princess he loves. Each line starts with a integer ki(0<=ki<=m), and then ki different integers, ranging from 1 to m denoting the princesses.
 
Output
For each test case, first output "Case #x:" in a line, where x indicates the case number between 1 and T.
Then output n lines. For each prince, first print li, the number of different princess he can marry so that the rest princes and princesses can still get the maximum marriage number.
After that print li different integers denoting those princesses,in ascending order.
 
Sample Input
2
4 4
2 1 2
2 1 2
2 2 3
2 3 4
1 2
2 1 2
 
Sample Output
Case #1:
2 1 2
2 1 2
1 3
1 4
Case #2:
2 1 2
 
Source
 
Recommend
zhuyuanchen520
 
 
n 个王子, m个公主,王子只能娶他喜欢的,公主可以嫁给任何王子,
对每一个王子求出他能娶的公主的最大集合,使之他娶这个集合内的任何一个,都不影响其他王子的选择
 
首先想到的肯定是匹配,但显然不是多重匹配,
 把每个具有相同公主集合的王子放在一起发现
从任何一个王子出发都能到达所有的公主 那么如果我们从公主向她匹配的王子连一条边
是不是就从任何一个王子出发都能到达其它所有的点
因为是有向图  是不是就是 任何两点之前都至少存在一条可以相互到达的路径
那就是SCC了
 
正确做法是
每个王子向他喜欢的公主连边,进行一次匹配求出最大匹配cnt
然后剩下王子n - cnt个,建立(n - cnt)个虚拟的公主,所有的实体王子都向这些公主连边
剩下公主m - cntge, 建立(m - cnt)个虚拟的王子,这些王子都向所有的实体公主连边
再求一次匹配
最后每个公主向她嫁的王子连边 求强连通就好了

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, maxm = ;
int n, m, s, t;
int head[maxn], cur[maxn], vis[maxn], d[maxn], cnt, nex[maxm << ], nex2[maxm << ];
int head2[maxn], cnt2;
int vis1[maxn], vis2[maxn]; struct node
{
int u, v, c, flag;
}Node[maxm << ], Edge[maxm << ]; void add_(int u, int v, int c, int flag)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
Node[cnt].flag = flag;
nex[cnt] = head[u];
head[u] = cnt++;
} void add(int u, int v, int c)
{
add_(u, v, c, );
add_(v, u, , );
} void add2(int u, int v)
{
Edge[cnt2].u = u;
Edge[cnt2].v = v;
nex2[cnt2] = head2[u];
head2[u] = cnt2++;
} bool bfs()
{
queue<int> Q;
mem(d, );
Q.push(s);
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = head[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(!d[v] && Node[i].c > )
{
d[v] = d[u] + ;
Q.push(v);
if(v == t) return ;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = ;
if(u == t || cap == )
return cap;
for(int &i = cur[u]; i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] == d[u] + && Node[i].c > )
{
int V = dfs(v, min(cap, Node[i].c));
Node[i].c -= V;
Node[i ^ ].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
if(cap > ) d[u] = -;
return ret;
} int Dinic()
{
int ans = ;
while(bfs())
{
memcpy(cur, head, sizeof head);
ans += dfs(s, INF);
}
return ans;
} int pre[maxn], low[maxn], sccno[maxn], dfs_clock, scc_cnt;
stack<int> S; void dfs(int u)
{
pre[u] = low[u] = ++dfs_clock;
S.push(u);
for(int i = head2[u]; i != -; i = nex2[i])
{
int v = Edge[i].v;
if(!pre[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v])
low[u] = min(low[u], pre[v]);
}
if(low[u] == pre[u])
{
scc_cnt++;
for(;;)
{
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
}
int G[maxn], ans;
int main()
{
int T;
int kase = ;
rd(T);
while(T--)
{
mem(head, -), mem(head2, -);
mem(vis1, ), mem(vis2, );
cnt = cnt2 = ;
rd(n), rd(m);
s = , t = maxn - ;
bool flag = ;
int tmp, u, v;
int x = max(n, m);
for(int i = ; i <= n; i++)
{
add(s, i, );
rd(tmp);
for(int j = ; j <= tmp; j++)
{
rd(v);
add(i, x + v, );
add2(i, x + v);
}
}
for(int i = ; i <= m; i++) add(x + i, t, );
int max_cnt = Dinic(); int mx = x * ;
for(int i = ; i <= m - max_cnt; i++)
{
mx++;
add(s, mx, );
for(int j = ; j <= m; j++)
add(mx, x + j, ), add2(mx, x + j);
}
for(int i = ; i <= n - max_cnt; i++)
{
mx++;
add(mx, t, );
for(int j = ; j <= n; j++)
add(j, mx, ), add2(j, mx);
}
Dinic();
for(int i = ; i < cnt; i++)
{
if(!Node[i].flag || Node[i].u == s || Node[i].v == t || Node[i].c != ) continue;
add2(Node[i].v, Node[i].u);
}
dfs_clock = scc_cnt = ;
mem(sccno, );
mem(pre, );
for(int i = ; i <= mx; i++)
if(!pre[i]) dfs(i);
printf("Case #%d:\n", ++kase);
for(int i = ; i <= n; i++)
{
ans = ;
for(int j = head2[i]; j != -; j = nex2[j])
{
int v = Edge[j].v;
if(sccno[i] == sccno[v] && v - x <= m)
G[ans++] = v;
}
sort(G, G + ans);
printf("%d", ans);
for(int j = ; j < ans; j++)
{
printf(" ");
printf("%d", G[j] - x);
} printf("\n"); } } return ;
}

Prince and Princess HDU - 4685(匹配 + 强连通)的更多相关文章

  1. H - Prince and Princess - HDU 4685(二分匹配+强连通分量)

    题意:有N个王子M个公主,王子喜欢一些公主,而且只能是王子喜欢的人,他们才可以结婚,现在让他们尽可能多的结婚的前提下找出来每个王子都可以和谁结婚. 分析:先求出来他们的最大匹配,因为给的数据未必是完备 ...

  2. hdu 4685(匹配+强连通分量)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 思路:想了好久,终于想明白了,懒得写了,直接copy大牛的思路了,写的非常好! 做法是先求一次最 ...

  3. HDU4685:Prince and Princess(二分图匹配+tarjan)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  4. HDU 4685 Prince and Princess(二分匹配+强联通分量)

    题意:婚配问题,但是题目并不要求输出最大匹配值,而是让我们输出,一个王子可以与哪些王妃婚配而不影响最大匹配值. 解决办法:先求一次最大匹配,如果有两个已经匹配的王妃,喜欢她们两个的有两个或者以上相同的 ...

  5. HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  6. HDU 4685 Prince and Princess 二分图匹配+tarjan

    Prince and Princess 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4685 Description There are n pri ...

  7. 强连通+二分匹配(hdu4685 Prince and Princess)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  8. POJ 1904 HDU 4685

    这两道题差不多,POJ这道我很久以前就做过,但是比赛的时候居然没想起来.. POJ 这道题的题意是,N个王子每个人都有喜欢的公主,当他们选定一个公主结婚时,必须是的剩下的人也能找到他喜欢的公主结婚. ...

  9. UVA - 10635 Prince and Princess LCS转LIS

    题目链接: http://bak.vjudge.net/problem/UVA-10635 Prince and Princess Time Limit: 3000MS 题意 给你两个数组,求他们的最 ...

随机推荐

  1. Spring Boot应用总结更新

    一.SpringBoot的产生背景: SpringBoot的产生背景伴随着微服务,微服务的相关概念参考上一篇的博客,分布式架构理论: 微服务的宏观概念理解: 将一个大应用拆分成多个小应用,一个小应用是 ...

  2. (简单)华为荣耀4A SCL-TL00的usb调试模式在哪里打开的方法

    就在我们使用PC通过数据线连接上安卓手机的时候,如果手机没有开启Usb调试模式,PC则没办法成功检测到我们的手机,有时候,我们使用的一些功能强大的App好比之前我们使用的一个App引号精灵,老版本就需 ...

  3. [Python][Scrapy 框架] Python3 Scrapy的安装

    1.方法(只介绍 pip 方式安装) PS.不清楚 pip(easy_install) 可以百度或留言. cmd命令: (直接可以 pip,而不用跳转到 pip.exe目录下,是因为把所在目录加入 P ...

  4. [20190401]跟踪dbms_lock.sleep调用.txt

    [20190401]跟踪dbms_lock.sleep调用.txt --//自己在semtimedop函数调用理解错误,加深理解,跟踪dbms_lock.sleep调用的情况. 1.环境:SCOTT@ ...

  5. Python函数(一)之杵臼之交

    Python函数 函数的作用:对功能进行封装,减少重复代码,方便维护,流程清晰明了,易于理解. 函数的结构: def 函数名():      函数体       return语句 函数的返回值: 可以 ...

  6. c/c++ 网络编程 UDP 发送端 bind 作用

    网络编程 UDP 发送端 bind 作用 upd 发送端 调用bind函数的效果:把socket特定到一个指定的端口,如果不调用bind,内核会随机分配一个端口. upd 发送端 调用bind函数的目 ...

  7. 在windows下远程访问linux桌面

    一.安装xrdp工具: #  yum install xrdp #   yum install tigervnc-server #   service xrdp start 以上三个命令执行完毕安装完 ...

  8. (十三)Batch Processing

    In addition to being able to index, update, and delete individual documents, Elasticsearch also prov ...

  9. Generative Adversarial Nets[BEGAN]

    本文来自<BEGAN: Boundary Equilibrium Generative Adversarial Networks>,时间线为2017年3月.是google的工作. 作者提出 ...

  10. Nginx(三)------nginx 反向代理

    Nginx 服务器的反向代理服务是其最常用的重要功能,由反向代理服务也可以衍生出很多与此相关的 Nginx 服务器重要功能,比如后面会介绍的负载均衡.本篇博客我们会先介绍 Nginx 的反向代理,当然 ...