浅谈最长上升子序列(LIS)
一、瞎扯的内容
给一个长度为n的序列,求它的最长上升子序列(LIS)
简单的dp
n=read();
for(i=;i<=n;i++) a[i]=read();
for(i=;i<=n;i++)
for(j=;j<i;j++)
if(a[j]<a[i])
dp[i]=max(dp[i],dp[j]+);
printf("%d",dp[n]);
然后发现


看来需要一个nlogn求LIS的算法
二、不瞎扯的内容
上一个算法慢在哪里呢?内层的循环
如果把它变成二分查找不就是nlogn的算法了吗
为此需要进行一下改动
dp数组改为存储长度为i的上升子序列中最小的末尾数字
这样每当外层循环到了一个新的数字
若
a[i]>dp[len]//新的数字比当前LIS的末尾数字大
则
dp[++len]=a[i]//愉快地把这个数字接到后面
如果它小于等于dp[len]?
举个例子
序列2 3 1
i=1:找到2,当前LIS={2},没毛病;
i=2:找到3,发现它比LIS的最后一个数字大,把它接到后面,当前LIS={2,3};
i=3:找到1,发现它比3小,那么在当前的LIS中找到一个最小的比1大的数,也就是2,并把2替换成1,当前LIS={1,3}
Q1:为什么可以这么做呢?
我们现在把2替换成了1,如果接下来还能把3替换,我们就可以得到一个更优的LIS
为什么更优?首先LIS是保证尽可能长的,在此基础上,末尾数字越小越优
Q2:如何在当前的LIS中找到一个最小的比a[i]大的数?
根据“长度一定时,末尾数字越小结果越优”原则,dp数组一定是递增的
这个递增就不做证明了,应该比较好想
所以就可以用二分查找了
问题解决
for(i=;i<=n;i++) dp[i]=0x7fffffff;
dp[]=a[];
int len=,l,r,mid;
for(i=;i<=n;i++)
{
if(a[i]>dp[len]) dp[++len]=a[i];
else
{
l=;r=len;
while(l<=r)
{
mid=(l+r)>>;
if(dp[mid]>a[i]) r=mid-;
else l=mid+;
}
dp[l]=min(dp[l],a[i]);
} }
三、来道题
题目简述:给出两个1~n的序列,求他们的最长公共子序列(n≤100000)
这跟LIS有什么关系呢?
还真有关系
不妨改为在第二个序列中匹配第一个序列,最多匹配多少
由于两个序列都是1~n的,可将第一个序列重新定义一下
比如 3 2 1 4 5
3----1;2----2;1----3;4----4;5----5(对应到它是第几个)
那么第二个序列 1 2 3 4 5就会变成3 2 1 4 5
这时再求最长公共子序列的答案是一样的
然而可以发现第一个序列已经变成了1~n的升序排列,那么第二个序列的子序列 也是第一个序列的子序列的充要条件 是 它是一个上升的序列
那么问题就变成了求第二个序列的LIS
用上述方法可以解决
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; inline int read()
{
int f=,x=;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getchar();}
while(isdigit(ch)) {x=x*+ch-''; ch=getchar();}
return x*f;
} int n;
int a[],b[],f[],g[]; int main()
{
int i;
n=read();
for(i=;i<=n;i++)
{
a[i]=read();
g[a[i]]=i;
}
for(i=;i<=n;i++)
{
b[i]=read();
b[i]=g[b[i]];
f[i]=0x7fffffff;
}
f[]=b[];
int len=,l,r,mid;
for(i=;i<=n;i++)
{
if(b[i]>f[len]) f[++len]=b[i];
else
{
l=;r=len;
while(l<=r)
{
mid=(l+r)>>;
if(f[mid]>b[i]) r=mid-;
else l=mid+;
}
f[l]=min(f[l],b[i]);
}
}
printf("%d\n",len);
return ;
}
~祝大家学习信息学顺利~
BJOI 加油!
浅谈最长上升子序列(LIS)的更多相关文章
- 浅谈最长上升子序列(O(n*logn)算法)
今天GM讲了最长上升子序列的logn*n算法,但没讲思路... 我看了篇博客,发现-- 说的有道理!!! 首先,举例子: a[7]={1,2,4,3,6,7,5}(假设以1开头) 很明显,LIS=5: ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 最长上升子序列LIS(51nod1134)
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】
二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...
- 题解 最长上升子序列 LIS
最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- 一个数组求其最长递增子序列(LIS)
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
随机推荐
- 【原创】Linux基础之iptables
iptables 1.4.21 官方:https://www.netfilter.org/projects/iptables/index.html iptables is the userspace ...
- 【原创】大叔经验分享(17)编程实践对比Java vs Scala
scala 官方地址 https://www.scala-lang.org/ 本文尽可能包含了一些主要的java和scala在编程实践时的显著差异,展现scala的代码的简洁优雅:scala通吃< ...
- Spring-boot 国际化
在application.properties文件中配置 spring.message.basename=i18n.login 页面使用 th:text="#{login.tip}" ...
- drf版本控制 和django缓存,跨域问题,
drf版本控制 基于url的get传参方式 REST_FRAMEWORK={ # "DEFAULT_AUTHENTICATION_CLASSES":["app01.aut ...
- 强大的IDEA开发工具
开发工具切换IDEA 一:首先安装好IDEA工具并且配置maven信息 打开-File-Settings 新建maven WEB项目 打开-File-New-Project 点击NEXT 点击NEXT ...
- selenium+python-unittest多线程执行用例
前言 假设执行一条脚本(.py)用例一分钟,那么100个脚本需要100分钟,当你的用例达到一千条时需要1000分钟,也就是16个多小时...那么如何并行运行多个.py的脚本,节省时间呢?这就用到多线程 ...
- 集腋成裘-08-ECharts -简介-01
目标:让数据说话. 大数据时代的到来以及有效应用,大幅度提升了企业的管理能力.决策科学化与可执行性水平,推动传统决策方式朝着数据驱动转型.可视化数据分析对决策者产生的意义将在事前预测.事中感知以及事后 ...
- 模块度Q
模块度:也称模块化度量值,是目前常用的一种衡量网络社区结构强度的方法. 常用语衡量一个社区划分结果的优劣:一个理想化的社区划分应该对应着社区内部节点间相似度尽可能的高,同时社区外部节点间的相异度尽可能 ...
- JSONP ---------跨域
什么是跨域 JavaScript出于安全方面的考虑,不允许跨域调用其他页面的对象.但在安全限制的同时也给注入iframe或是ajax应用上带来了不少麻烦.这里把涉及到跨域的一些问题简单地整理一下: 首 ...
- Go的sort接口实现
package main import ( "fmt" "sort" "time" ) type Track struct { Title ...