一、修改pascalvoc_2007.py

生成自己的tfrecord文件后,修改训练数据shape——打开datasets文件夹中的pascalvoc_2007.py文件,
根据自己训练数据修改:NUM_CLASSES = 类别数(不包含背景);

# TRAIN_STATISTICS = {
# 'none': (0, 0),
# 'aeroplane': (238, 306),
# 'bicycle': (243, 353),
# 'bird': (330, 486),
# 'boat': (181, 290),
# 'bottle': (244, 505),
# 'bus': (186, 229),
# 'car': (713, 1250),
# 'cat': (337, 376),
# 'chair': (445, 798),
# 'cow': (141, 259),
# 'diningtable': (200, 215),
# 'dog': (421, 510),
# 'horse': (287, 362),
# 'motorbike': (245, 339),
# 'person': (2008, 4690),
# 'pottedplant': (245, 514),
# 'sheep': (96, 257),
# 'sofa': (229, 248),
# 'train': (261, 297),
# 'tvmonitor': (256, 324),
# 'total': (5011, 12608),
# }
# TEST_STATISTICS = {
# 'none': (0, 0),
# 'aeroplane': (1, 1),
# 'bicycle': (1, 1),
# 'bird': (1, 1),
# 'boat': (1, 1),
# 'bottle': (1, 1),
# 'bus': (1, 1),
# 'car': (1, 1),
# 'cat': (1, 1),
# 'chair': (1, 1),
# 'cow': (1, 1),
# 'diningtable': (1, 1),
# 'dog': (1, 1),
# 'horse': (1, 1),
# 'motorbike': (1, 1),
# 'person': (1, 1),
# 'pottedplant': (1, 1),
# 'sheep': (1, 1),
# 'sofa': (1, 1),
# 'train': (1, 1),
# 'tvmonitor': (1, 1),
# 'total': (20, 20),
# }
# SPLITS_TO_SIZES = {
# 'train': 5011,
# 'test': 4952,
# }
# SPLITS_TO_STATISTICS = {
# 'train': TRAIN_STATISTICS,
# 'test': TEST_STATISTICS,
# }
# NUM_CLASSES = 20 TRAIN_STATISTICS = {
'none': (0, 0),
'flower': (35,35),
'total': (35, 35),
}
TEST_STATISTICS = {
'none': (0, 0),
'flower': (15,15)
}
SPLITS_TO_SIZES = {
'train': 35,
'test': 15
}
SPLITS_TO_STATISTICS = {
'train': TRAIN_STATISTICS,
'test': TEST_STATISTICS,
}
NUM_CLASSES = 1 #类别,不包含背景

二、修改ssd_vgg_300.py

根据自己训练类别数修改96 和97行:等于类别数+1

三、修改eval_ssd_network.py

修改类别数和batchsize

四、修改train_ssd_network.py

数据格式改为 NHWC:

numclasses改为类别数加1:

batch_size该为自己设置的:

修改训练步数(None代表无限训练下去):

可以更改模型保存的参数:

五:加载VGG_16,重新训练模型

将VGG_16放在checkpoint文件夹下面:

从VGG16开始训练其中某些层的参数

 # 通过加载预训练好的vgg16模型,对“voc07trainval+voc2012”进行训练
# 通过checkpoint_exclude_scopes指定哪些层的参数不需要从vgg16模型里面加载进来
# 通过trainable_scopes指定哪些层的参数是需要训练的,未指定的参数保持不变,若注释掉此命令,所有的参数均需要训练
DATASET_DIR=/home/doctorimage/kindlehe/common/dataset/VOC0712/
TRAIN_DIR=.././log_files/log_finetune/train_voc0712_20170816_1654_VGG16/
CHECKPOINT_PATH=../checkpoints/vgg_16.ckpt python3 ../train_ssd_network.py \
--train_dir=${TRAIN_DIR} \ #训练生成模型的存放路径
--dataset_dir=${DATASET_DIR} \ #数据存放路径
--dataset_name=pascalvoc_2007 \ #数据名的前缀
--dataset_split_name=train \
--model_name=ssd_300_vgg \ #加载的模型的名字
--checkpoint_path=${CHECKPOINT_PATH} \ #所加载模型的路径
--checkpoint_model_scope=vgg_16 \ #所加载模型里面的作用域名
--checkpoint_exclude_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box \
--trainable_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box \
--save_summaries_secs=60 \ #每60s保存一下日志
--save_interval_secs=600 \ #每600s保存一下模型
--weight_decay=0.0005 \ #正则化的权值衰减的系数
--optimizer=adam \ #选取的最优化函数
--learning_rate=0.001 \ #学习率
--learning_rate_decay_factor=0.94 \ #学习率的衰减因子
--batch_size=24 \
--gpu_memory_fraction=0.9 #指定占用gpu内存的百分比

接下来可以进行fine-tunning

 (当你的模型通过vgg训练的模型收敛到大概o.5mAP的时候,可以进行这一步的fine-tune)

 # 通过加载预训练好的vgg16模型,对“voc07trainval+voc2012”进行训练
# 通过checkpoint_exclude_scopes指定哪些层的参数不需要从vgg16模型里面加载进来
# 通过trainable_scopes指定哪些层的参数是需要训练的,未指定的参数保持不变
DATASET_DIR=/home/doctorimage/kindlehe/common/dataset/VOC0712/
TRAIN_DIR=.././log_files/log_finetune/train_voc0712_20170816_1654_VGG16/
CHECKPOINT_PATH=./log_files/log_finetune/train_voc0712_20170712_1741_VGG16/model.ckpt-253287 python3 ../train_ssd_network.py \
--train_dir=${TRAIN_DIR} \ #训练生成模型的存放路径
--dataset_dir=${DATASET_DIR} \ #数据存放路径
--dataset_name=pascalvoc_2007 \ #数据名的前缀
--dataset_split_name=train \
--model_name=ssd_300_vgg \ #加载的模型的名字
--checkpoint_path=${CHECKPOINT_PATH} \ #所加载模型的路径
--checkpoint_model_scope=vgg_16 \ #所加载模型里面的作用域名
--checkpoint_exclude_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box \
--trainable_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block10,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_300_vgg/block10_box,ssd_300_vgg/block11_box \
--save_summaries_secs=60 \ #每60s保存一下日志
--save_interval_secs=600 \ #每600s保存一下模型
--weight_decay=0.0005 \ #正则化的权值衰减的系数
--optimizer=adam \ #选取的最优化函数
--learning_rate=0.001 \ #学习率
--learning_rate_decay_factor=0.94 \ #学习率的衰减因子
--batch_size=24 \
--gpu_memory_fraction=0.9 #指定占用gpu内存的百分比

补充:还可以拿来训练vgg512

从自己训练的ssd_300_vgg模型开始训练ssd_512_vgg的模型。

因此ssd_300_vgg中没有block12,又因为block7,block8,block9,block10,block11,中的参数张量两个网络模型中不匹配,因此ssd_512_vgg中这几个模块的参数不从ssd_300_vgg模型中继承,因此使用checkpoint_exclude_scopes命令指出

因为所有的参数均需要训练,因此不使用命令--trainable_scopes。

  1 #/bin/bash
2 DATASET_DIR=/home/data/xxx/imagedata/xing_tf/train_tf/
3 TRAIN_DIR=/home/data/xxx/model/xing300512_model/
4 CHECKPOINT_PATH=/home/data/xxx/model/xing300_model/model.ckpt-60000 #加载的ssd_300_vgg模型
5 python3 ./train_ssd_network.py \
6 --train_dir=${TRAIN_DIR} \
7 --dataset_dir=${DATASET_DIR} \
8 --dataset_name=pascalvoc_2007 \
9 --dataset_split_name=train \
10 --model_name=ssd_512_vgg \
11 --checkpoint_path=${CHECKPOINT_PATH} \
12 --checkpoint_model_scope=ssd_300_vgg \
13 --checkpoint_exclude_scopes=ssd_512_vgg/block7,ssd_512_vgg/block7_box,ssd_512_vgg/block8,ssd_512_vgg/block8_box, ssd_512_vgg/block9,ssd_512_vgg/block9_box,ssd_512_vgg/block10,ssd_512_vgg/block10_box,ssd_512_vgg/block11,ssd_512_vgg/b lock11_box,ssd_512_vgg/block12,ssd_512_vgg/block12_box \
14 #--trainable_scopes=ssd_300_vgg/conv6,ssd_300_vgg/conv7,ssd_300_vgg/block8,ssd_300_vgg/block9,ssd_300_vgg/block1 0,ssd_300_vgg/block11,ssd_300_vgg/block4_box,ssd_300_vgg/block7_box,ssd_300_vgg/block8_box,ssd_300_vgg/block9_box,ssd_3 00_vgg/block10_box,ssd_300_vgg/block11_box \
15 --save_summaries_secs=28800 \
16 --save_interval_secs=28800 \
17 --weight_decay=0.0005 \
18 --optimizer=adam \
19 --learning_rate_decay_factor=0.94 \
20 --batch_size=16 \
21 --num_classes=4 \
22 -gpu_memory_fraction=0.8 \
23

六、全部从头开始训练自己的模型

 # 注释掉CHECKPOINT_PATH,不提供初始化模型,让模型自己随机初始化权重,从头训练
# 删除checkpoint_exclude_scopes和trainable_scopes,因为是从头开始训练
# CHECKPOINT_PATH=./log_files/log_finetune/train_voc0712_20170712_1741_VGG16/model.ckpt-253287 python3 ../train_ssd_network.py \
--train_dir=${TRAIN_DIR} \ #训练生成模型的存放路径
--dataset_dir=${DATASET_DIR} \ #数据存放路径
--dataset_name=pascalvoc_2007 \ #数据名的前缀
--dataset_split_name=train \
--model_name=ssd_300_vgg \ #加载的模型的名字
#--checkpoint_path=${CHECKPOINT_PATH} \ #所加载模型的路径,这里注释掉
#--checkpoint_model_scope=vgg_16 \ #所加载模型里面的作用域名
--save_summaries_secs=60 \ #每60s保存一下日志
--save_interval_secs=600 \ #每600s保存一下模型
--weight_decay=0.0005 \ #正则化的权值衰减的系数
--optimizer=adam \ #选取的最优化函数
--learning_rate=0.00001 \ #学习率
--learning_rate_decay_factor=0.94 \ #学习率的衰减因子
--batch_size=32

SSD-tensorflow-3 重新训练模型(vgg16)的更多相关文章

  1. 【目标检测】SSD+Tensorflow 300&512 配置详解

    SSD_300_vgg和SSD_512_vgg weights下载链接[需要科学上网~]: Model Training data Testing data mAP FPS SSD-300 VGG-b ...

  2. tensorflow利用预训练模型进行目标检测(一):安装tensorflow detection api

    一.tensorflow安装 首先系统中已经安装了两个版本的tensorflow,一个是通过keras安装的, 一个是按照官网教程https://www.tensorflow.org/install/ ...

  3. 我的Keras使用总结(3)——利用bottleneck features进行微调预训练模型VGG16

    Keras的预训练模型地址:https://github.com/fchollet/deep-learning-models/releases 一个稍微讲究一点的办法是,利用在大规模数据集上预训练好的 ...

  4. tensorflow利用预训练模型进行目标检测(二):预训练模型的使用

    一.运行样例 官网链接:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detect ...

  5. Tensorflow CPU mask-rcnn 训练模型

    基于cpu版的tensorflow ,使用mask_rcnn训练识别箱子的模型 代码参考(https://blog.csdn.net/disiwei1012/article/details/79928 ...

  6. tensorflow利用预训练模型进行目标检测(四):检测中的精度问题以及evaluation

    一.tensorflow提供的evaluation Inference and evaluation on the Open Images dataset:https://github.com/ten ...

  7. tensorflow利用预训练模型进行目标检测(三):将检测结果存入mysql数据库

    mysql版本:5.7 : 数据库:rdshare:表captain_america3_sd用来记录某帧是否被检测.表captain_america3_d用来记录检测到的数据. python模块,包部 ...

  8. SSD:TensorFlow中的单次多重检测器

    SSD:TensorFlow中的单次多重检测器 SSD Notebook 包含 SSD TensorFlow 的最小示例. 很快,就检测出了两个主要步骤:在图像上运行SSD网络,并使用通用算法(top ...

  9. 深度学习tensorflow实战笔记 用预训练好的VGG-16模型提取图像特征

    1.首先就要下载模型结构 首先要做的就是下载训练好的模型结构和预训练好的模型,结构地址是:点击打开链接 模型结构如下: 文件test_vgg16.py可以用于提取特征.其中vgg16.npy是需要单独 ...

  10. TensorFlow迁移学习的识别花试验

    最近学习了TensorFlow,发现一个模型叫vgg16,然后搭建环境跑了一下,觉得十分神奇,而且准确率十分的高.又上了一节选修课,关于人工智能,老师让做一个关于人工智能的试验,于是觉得vgg16很不 ...

随机推荐

  1. zzulioj--1609--求和(数学规律)

     1609: 求和 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 209  Solved: 67 SubmitStatusWeb Board De ...

  2. 关于Tomcat的启动

    1.Tomcat分为安装版和解压版. 2.在Tomcat的解压版的bin路径下启动startup.bat的时候,如果没有启动成功,请检查是否设置了JAVA_HOME 3.建议不要在环境变量里面设置CA ...

  3. ios上有时候提交按钮点击两次才可以取消输入框软键盘

    ios上有时候提交按钮点击两次才可以取消输入框软键盘,点击第一次软键盘消失,点击第二次输入框页面消失,这样用户体验不好.我的做法是用 touchstart 代替click来处理 反应快,但是有时候会出 ...

  4. Devexpress控件使用二:barManager

    1.拖放控件 2.两种按钮显示形式 1)上面是大图标,下面是说明 a.Add → Largebutton 注:勾选 Show DesignTime enancements 才会出现Add b.添加图片 ...

  5. 适配器模式(Adapter):类适配器、对象适配器

    适配器模式(Adapter):将一个类的接口转换成客户希望的另外一个接口.A d a p t e r 模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作. 适用场景: 1.已经存在的类的接口 ...

  6. Linux与Windows信息交互快捷方法

    要把windows上的D盘挂载的Linux上,首先要知道windows的用户名和密码 假设用户名是administrator,密码是123456 首先,在linux上创建一个挂载的目标目录 mkdir ...

  7. php时间差方法

    /** * 时间差计算 * * @param Timestamp $time * @return String Time Elapsed */ function time2Units ($time,$ ...

  8. 运维派 企业面试题6 防dos攻击

    Linux运维必会的实战编程笔试题(19题) 企业实战题6:请用至少两种方法实现! 写一个脚本解决DOS攻击生产案例 提示:根据web日志或者或者网络连接数,监控当某个IP并发连接数或者短时内PV达到 ...

  9. Hadoop_MapReduce中Mapper类和Reduce类

    在权威指南中,有个关于处理温度的MapReduce类,具体如下: 第一部分:Map public class MaxTemperatureMapper extends MapReduceBase im ...

  10. NodeJS学习笔记 (8)网络服务-http-server(ok)

    http服务端概览 创建server 几行代码搞定 var http = require('http'); var requestListener = function(req, res){ res. ...