记张量积的数学记号为 ⊗。

1. linear

假设 V,W 为线性空间(vector spaces),f:V→W是线性(linear)的,如果满足:

f(v1+v2)=f(v1)+f(v2)f(αv)=αf(v)
  • f 表示的是两个线性空间的映射,从线性空间 V 到线性空间 W;

2. bilinear

有三个线性空间,U,V,W,f:U×V→W是双线性的(bilinear),如果:

f(u1+u2,v)=f(u1,v)+f(u2,v)f(u,v1+v2)=f(u,v1)+f(u,v2)f(αu,v)=αf(u,v)=f(u,αv)
  • 当 v 固定,f(u,v) 在 u 中是线性的;

    • f(u,v)=fv(u)=fv(u1+u2)=fv(u1)+fv(u2)
    • f(αu,v)=fv(αu)=αfv(u)
  • 当 u 固定时,f(u,v) 在 v 是线性的;

3. U⊗V

{bilinearU×V→W}≃Hom(U⊗V,W)
  • U⊗V 仍然是线性空间(是一个新的线性空间),才能使双线性映射(bilinear maps) U×V→W 是 U⊗V→W上的线性映射(linear map)。

    • 既然 U⊗V 是一个新的线性空间,不仿记为 X
    • 此时 U⊗V→W 可被重新描述为 X→W

4. 张量的相关计算

U⊗V 该线性空间中的元素:{u⊗v|u∈U,v∈V}

因为 U⊗V 仍然构成线性空间(f(u,v):U⊗V),所以有:

f(u1+u2,v)=f(u1,v)+f(u2,v)⇒(u1+u2)⊗v=u1⊗v+u2⊗vf(u,v1+v2)=f(u,v1)+f(u,v2)⇒u⊗(v1+v2)=u⊗v1+u⊗v2f(αu,v)=αf(u,v)=f(u,αv)⇒(αu)⊗v=α(u⊗v)=u⊗(αv)

5. 一个实例

定义二维线性空间:R2=⟨e1,e2⟩,则 R2⊗R2的标准基由下述构成:

e1⊗e1,e1⊗e2,e2⊗e1,e2⊗e2

从张量积(tensor product)到多重线性代数(multilinear algebra)的更多相关文章

  1. 线性代数 | Linear Algebra

    网上说<线性代数应该这样学>非常不错,再配合大学教材,把线性代数的基本知识点过一遍. 线性代数 - 知乎 最近在跟一个教程:李宏毅的线性代数 基本知识: Rn :We denote the ...

  2. 线性代数 -- Linear Algebra with Applications

    @.如果线性方程组无解,则称该方程组是不相容的(inconsistent). @.如果线性方程组至少存在一个解,则称该方程组是相容的(consistent). @.等价方程组(equivalent s ...

  3. python深度学习培训概念整理

    对于公司组织的人工智能学习,每周日一天课程共计五周,已经上了三次,一天课程下来讲了两本书的知识.发现老师讲的速度太快,深度不够,而且其他公司学员有的没有接触过python知识,所以有必要自己花时间多看 ...

  4. (转)TensorFlow 入门

        TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Da ...

  5. R中的统计模型

    R中的统计模型 这一部分假定读者已经对统计方法,特别是回归分析和方差分析有一定的了解.后面我们还会假定读者对广义线性模型和非线性模型也有所了解.R已经很好地定义了统计模型拟合中的一些前提条件,因此我们 ...

  6. tensorflow op tf.global_variables_initializer

    一.安装目前用了tensorflow.deeplearning4j两个深度学习框架, tensorflow 之前一直支持到python 3.5,目前以更新到3.6,故安装最新版体验使用. 慢慢长征路: ...

  7. MATLAB矩阵运算

    1. 矩阵的加减乘除和(共轭)转置 (1) 矩阵的加法和减法 如果矩阵A和B有相同的维度(行数和列数都相等),则可以定义它们的和A+B以及它们的差A-B,得到一个与A和B同维度的矩阵C,其中Cij=A ...

  8. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  9. 论文翻译——Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

    Abstract Semantic word spaces have been very useful but cannot express the meaning of longer phrases ...

随机推荐

  1. 关于Promise的详细总结

    1. 异步回调 1.1 回调地狱 在需要多个操作的时候,会导致多个回调函数嵌套,导致代码不够直观,就是常说的回调地狱 1.2 并行结果 如果几个异步操作之间并没有前后顺序之分,但需要等多个异步操作都完 ...

  2. xpath使用方法详解id 、starts-with、contains、text()和last() 的用法

    1.XPATH使用方法 使用XPATH有如下几种方法定位元素(相比CSS选择器,方法稍微多一点): a.通过绝对路径定位元素(不推荐!) WebElement ele = driver.findEle ...

  3. WebService学习总结(2)——WebService是什么?

    一.WebService是什么? 1. 基于Web的服务:服务器端整出一些资源让客户端应用访问(获取数据) 2. 一个跨语言.跨平台的规范(抽象) 3. 多个跨平台.跨语言的应用间通信整合的方案(实际 ...

  4. 【软件project】 文档 - 银行业务管理 - 需求分析

    ---------------------------------------------------------------------------------------------------- ...

  5. Java核心技术 卷Ⅰ 基础知识(5)

    第11章 异常.断言.日志和调试 处理错误 异常分类 声明已检查异常 如何抛出异常 创建异常类 捕获异常 捕获多个异常 再次抛出异常与异常链 finally子句 带资源的try语句 分析堆栈跟踪元素 ...

  6. unmapping error

    否则,会映射一个Getch的器件,就会报unmapping 的error

  7. HibernateCRUD基础框架(3)-简单的和较为复杂的标准的CRUD API

    优点:简单的和基础的CRUD功能可以很快实现,可以说是比较的"标准化".维护起来也很容易. 缺点:性能没有保障.不支持特别复杂的CRUD. 可以适用的场景:小型Web项目 1.Cr ...

  8. 老李的菜园 mysql 自定义函数

    新建: Create function function_name(参数列表)returns返回值类型 函数体 函数名,应该合法的标识符,并且不应该与已有的关键字冲突. 一个函数应该属于某个数据库,可 ...

  9. 内存问题检查利器——Purify

    内存问题检查利器——Purify 一.           引言 我们都知道软件的测试(在以产品为主的软件公司中叫做QA—Quality Assessment)占了整个软件工程的30% -50%,但有 ...

  10. 37、mipg-streamer的使用讲解

    讲解mjpg-streamer 其功能: 1.控制摄像头采集数据(通过ioctl采集数据,所有不支持CMOS,CMOS之前写驱动的时候是通过read,所有需要修改mjpg-streamer的源码或者C ...