从张量积(tensor product)到多重线性代数(multilinear algebra)
记张量积的数学记号为 ⊗。
1. linear
假设 V,W 为线性空间(vector spaces),f:V→W是线性(linear)的,如果满足:
- f 表示的是两个线性空间的映射,从线性空间 V 到线性空间 W;
2. bilinear
有三个线性空间,U,V,W,f:U×V→W是双线性的(bilinear),如果:
- 当 v 固定,f(u,v) 在 u 中是线性的;
- f(u,v)=fv(u)=fv(u1+u2)=fv(u1)+fv(u2)
- f(αu,v)=fv(αu)=αfv(u)
- 当 u 固定时,f(u,v) 在 v 是线性的;
3. U⊗V
- U⊗V 仍然是线性空间(是一个新的线性空间),才能使双线性映射(bilinear maps) U×V→W 是 U⊗V→W上的线性映射(linear map)。
- 既然 U⊗V 是一个新的线性空间,不仿记为 X
- 此时 U⊗V→W 可被重新描述为 X→W
4. 张量的相关计算
U⊗V 该线性空间中的元素:{u⊗v|u∈U,v∈V}
因为 U⊗V 仍然构成线性空间(f(u,v):U⊗V),所以有:
5. 一个实例
定义二维线性空间:R2=⟨e1,e2⟩,则 R2⊗R2的标准基由下述构成:
从张量积(tensor product)到多重线性代数(multilinear algebra)的更多相关文章
- 线性代数 | Linear Algebra
网上说<线性代数应该这样学>非常不错,再配合大学教材,把线性代数的基本知识点过一遍. 线性代数 - 知乎 最近在跟一个教程:李宏毅的线性代数 基本知识: Rn :We denote the ...
- 线性代数 -- Linear Algebra with Applications
@.如果线性方程组无解,则称该方程组是不相容的(inconsistent). @.如果线性方程组至少存在一个解,则称该方程组是相容的(consistent). @.等价方程组(equivalent s ...
- python深度学习培训概念整理
对于公司组织的人工智能学习,每周日一天课程共计五周,已经上了三次,一天课程下来讲了两本书的知识.发现老师讲的速度太快,深度不够,而且其他公司学员有的没有接触过python知识,所以有必要自己花时间多看 ...
- (转)TensorFlow 入门
TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Da ...
- R中的统计模型
R中的统计模型 这一部分假定读者已经对统计方法,特别是回归分析和方差分析有一定的了解.后面我们还会假定读者对广义线性模型和非线性模型也有所了解.R已经很好地定义了统计模型拟合中的一些前提条件,因此我们 ...
- tensorflow op tf.global_variables_initializer
一.安装目前用了tensorflow.deeplearning4j两个深度学习框架, tensorflow 之前一直支持到python 3.5,目前以更新到3.6,故安装最新版体验使用. 慢慢长征路: ...
- MATLAB矩阵运算
1. 矩阵的加减乘除和(共轭)转置 (1) 矩阵的加法和减法 如果矩阵A和B有相同的维度(行数和列数都相等),则可以定义它们的和A+B以及它们的差A-B,得到一个与A和B同维度的矩阵C,其中Cij=A ...
- Domain Adaptation (3)论文翻译
Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...
- 论文翻译——Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
Abstract Semantic word spaces have been very useful but cannot express the meaning of longer phrases ...
随机推荐
- h5背景
1.背景属性复习: background-image background-color background-repeat background-position background-attachm ...
- Java Web学习总结(17)——JSP属性范围
所谓的属性范围就是一个属性设置之后,可以经过多少个其他页面后仍然可以访问的保存范围. 一.JSP属性范围 JSP中提供了四种属性范围,四种属性范围分别指以下四种: 当前页:一个属性只能在一个页面中取得 ...
- debian 9 安装后需做的几件事
debian 9 安装后需做的几件事 安装环境:X86 >> Debian 9 Linux/GNU apt源更新 注意连上有线网络 刚安装好的debian系统中,/etc/apt/sour ...
- POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)
依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...
- 机器学习分支:active learning、incremental learning、online machine learning
1. active learning Active learning 是一种特殊形式的半监督机器学习方法,该方法允许交互式地询问用户(或者其他形式的信息源 information source)以获取 ...
- [Vue] Load components when needed with Vue async components
In large applications, dividing the application into smaller chunks is often times necessary. In thi ...
- php实现 字符串分割
php实现 字符串分割 一.总结 一句话总结: 1.字符串按固定位分割函数是什么? 7 $str_arr=str_split($str,8); 2.字符串填补函数的参数是什么? 10 $str_arr ...
- zoj 2724 Windows Message Queue 优先队列
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1724 题目大意: 给出两种操作,GET要求取出当前队首的元素,而PUT会输入名 ...
- 【BZOJ 2119】股市的预测
[链接]h在这里写链接 [题意] 给你一个长度为n的数组a[] 设b[i] = a[i+1]-a[i]; 然后让你在b[i]里面找ABA的形式. 这里B的长度要求为m; ...
- POJ 2590 Steps (ZOJ 1871)
http://poj.org/problem?id=2590 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1871 题目大 ...