记张量积的数学记号为 ⊗。

1. linear

假设 V,W 为线性空间(vector spaces),f:V→W是线性(linear)的,如果满足:

f(v1+v2)=f(v1)+f(v2)f(αv)=αf(v)
  • f 表示的是两个线性空间的映射,从线性空间 V 到线性空间 W;

2. bilinear

有三个线性空间,U,V,W,f:U×V→W是双线性的(bilinear),如果:

f(u1+u2,v)=f(u1,v)+f(u2,v)f(u,v1+v2)=f(u,v1)+f(u,v2)f(αu,v)=αf(u,v)=f(u,αv)
  • 当 v 固定,f(u,v) 在 u 中是线性的;

    • f(u,v)=fv(u)=fv(u1+u2)=fv(u1)+fv(u2)
    • f(αu,v)=fv(αu)=αfv(u)
  • 当 u 固定时,f(u,v) 在 v 是线性的;

3. U⊗V

{bilinearU×V→W}≃Hom(U⊗V,W)
  • U⊗V 仍然是线性空间(是一个新的线性空间),才能使双线性映射(bilinear maps) U×V→W 是 U⊗V→W上的线性映射(linear map)。

    • 既然 U⊗V 是一个新的线性空间,不仿记为 X
    • 此时 U⊗V→W 可被重新描述为 X→W

4. 张量的相关计算

U⊗V 该线性空间中的元素:{u⊗v|u∈U,v∈V}

因为 U⊗V 仍然构成线性空间(f(u,v):U⊗V),所以有:

f(u1+u2,v)=f(u1,v)+f(u2,v)⇒(u1+u2)⊗v=u1⊗v+u2⊗vf(u,v1+v2)=f(u,v1)+f(u,v2)⇒u⊗(v1+v2)=u⊗v1+u⊗v2f(αu,v)=αf(u,v)=f(u,αv)⇒(αu)⊗v=α(u⊗v)=u⊗(αv)

5. 一个实例

定义二维线性空间:R2=⟨e1,e2⟩,则 R2⊗R2的标准基由下述构成:

e1⊗e1,e1⊗e2,e2⊗e1,e2⊗e2

从张量积(tensor product)到多重线性代数(multilinear algebra)的更多相关文章

  1. 线性代数 | Linear Algebra

    网上说<线性代数应该这样学>非常不错,再配合大学教材,把线性代数的基本知识点过一遍. 线性代数 - 知乎 最近在跟一个教程:李宏毅的线性代数 基本知识: Rn :We denote the ...

  2. 线性代数 -- Linear Algebra with Applications

    @.如果线性方程组无解,则称该方程组是不相容的(inconsistent). @.如果线性方程组至少存在一个解,则称该方程组是相容的(consistent). @.等价方程组(equivalent s ...

  3. python深度学习培训概念整理

    对于公司组织的人工智能学习,每周日一天课程共计五周,已经上了三次,一天课程下来讲了两本书的知识.发现老师讲的速度太快,深度不够,而且其他公司学员有的没有接触过python知识,所以有必要自己花时间多看 ...

  4. (转)TensorFlow 入门

        TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Da ...

  5. R中的统计模型

    R中的统计模型 这一部分假定读者已经对统计方法,特别是回归分析和方差分析有一定的了解.后面我们还会假定读者对广义线性模型和非线性模型也有所了解.R已经很好地定义了统计模型拟合中的一些前提条件,因此我们 ...

  6. tensorflow op tf.global_variables_initializer

    一.安装目前用了tensorflow.deeplearning4j两个深度学习框架, tensorflow 之前一直支持到python 3.5,目前以更新到3.6,故安装最新版体验使用. 慢慢长征路: ...

  7. MATLAB矩阵运算

    1. 矩阵的加减乘除和(共轭)转置 (1) 矩阵的加法和减法 如果矩阵A和B有相同的维度(行数和列数都相等),则可以定义它们的和A+B以及它们的差A-B,得到一个与A和B同维度的矩阵C,其中Cij=A ...

  8. Domain Adaptation (3)论文翻译

    Abstract The recent success of deep neural networks relies on massive amounts of labeled data. For a ...

  9. 论文翻译——Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

    Abstract Semantic word spaces have been very useful but cannot express the meaning of longer phrases ...

随机推荐

  1. h5背景

    1.背景属性复习: background-image background-color background-repeat background-position background-attachm ...

  2. Java Web学习总结(17)——JSP属性范围

    所谓的属性范围就是一个属性设置之后,可以经过多少个其他页面后仍然可以访问的保存范围. 一.JSP属性范围 JSP中提供了四种属性范围,四种属性范围分别指以下四种: 当前页:一个属性只能在一个页面中取得 ...

  3. debian 9 安装后需做的几件事

    debian 9 安装后需做的几件事 安装环境:X86 >> Debian 9 Linux/GNU apt源更新 注意连上有线网络 刚安装好的debian系统中,/etc/apt/sour ...

  4. POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)

    依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...

  5. 机器学习分支:active learning、incremental learning、online machine learning

    1. active learning Active learning 是一种特殊形式的半监督机器学习方法,该方法允许交互式地询问用户(或者其他形式的信息源 information source)以获取 ...

  6. [Vue] Load components when needed with Vue async components

    In large applications, dividing the application into smaller chunks is often times necessary. In thi ...

  7. php实现 字符串分割

    php实现 字符串分割 一.总结 一句话总结: 1.字符串按固定位分割函数是什么? 7 $str_arr=str_split($str,8); 2.字符串填补函数的参数是什么? 10 $str_arr ...

  8. zoj 2724 Windows Message Queue 优先队列

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1724 题目大意: 给出两种操作,GET要求取出当前队首的元素,而PUT会输入名 ...

  9. 【BZOJ 2119】股市的预测

    [链接]h在这里写链接 [题意]     给你一个长度为n的数组a[]     设b[i] = a[i+1]-a[i];     然后让你在b[i]里面找ABA的形式.     这里B的长度要求为m; ...

  10. POJ 2590 Steps (ZOJ 1871)

    http://poj.org/problem?id=2590 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1871 题目大 ...