用美国波士顿的房价数据来介绍如何使用LR和SGDR模型进行预测

# 从sklearn.datasets导入波士顿房价数据读取器。

from sklearn.datasets import load_boston

# 从读取房价数据存储在变量boston中。

boston = load_boston()

# 输出数据描述。

print (boston.DESCR)

# 从sklearn.cross_validation导入数据分割器。

from sklearn.cross_validation import train_test_split

# 导入numpy并重命名为np。

import numpy as np

X = boston.data

y = boston.target

# 随机采样25%的数据构建测试样本,其余作为训练样本。

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33, test_size=0.25)

# 分析回归目标值的差异。

print( "The max target value is", np.max(boston.target))

print( "The min target value is", np.min(boston.target))

print( "The average target value is", np.mean(boston.target))

# 从sklearn.preprocessing导入数据标准化模块。

from sklearn.preprocessing import StandardScaler

# 分别初始化对特征和目标值的标准化器。

ss_X = StandardScaler()

ss_y = StandardScaler()

# 分别对训练和测试数据的特征以及目标值进行标准化处理。

X_train = ss_X.fit_transform(X_train)

X_test = ss_X.transform(X_test)

y_train = ss_y.fit_transform(y_train)

y_test = ss_y.transform(y_test)

# 从sklearn.linear_model导入LinearRegression。

from sklearn.linear_model import LinearRegression

# 使用默认配置初始化线性回归器LinearRegression。

lr = LinearRegression()

# 使用训练数据进行参数估计。

lr.fit(X_train, y_train)

# 对测试数据进行回归预测。

lr_y_predict = lr.predict(X_test)

# 从sklearn.linear_model导入SGDRegressor。

from sklearn.linear_model import SGDRegressor

# 使用默认配置初始化线性回归器SGDRegressor。

sgdr = SGDRegressor()

# 使用训练数据进行参数估计。

sgdr.fit(X_train, y_train)

# 对测试数据进行回归预测。

sgdr_y_predict = sgdr.predict(X_test)

# 使用LinearRegression模型自带的评估模块,并输出评估结果。

print ('The value of default measurement of LinearRegression is', lr.score(X_test, y_test))

# 从sklearn.metrics依次导入r2_score、mean_squared_error以及mean_absoluate_error用于回归性能的评估。

from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

# 使用r2_score模块,并输出评估结果。

print( 'The value of R-squared of LinearRegression is', r2_score(y_test, lr_y_predict))

# 使用mean_squared_error模块,并输出评估结果。

print( 'The mean squared error of LinearRegression is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))

# 使用mean_absolute_error模块,并输出评估结果。

print( 'The mean absoluate error of LinearRegression is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(lr_y_predict)))

# 使用SGDRegressor模型自带的评估模块,并输出评估结果。

print( 'The value of default measurement of SGDRegressor is', sgdr.score(X_test, y_test))

# 使用r2_score模块,并输出评估结果。

print ('The value of R-squared of SGDRegressor is', r2_score(y_test, sgdr_y_predict))

# 使用mean_squared_error模块,并输出评估结果。

print( 'The mean squared error of SGDRegressor is', mean_squared_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict)))

# 使用mean_absolute_error模块,并输出评估结果。

print( 'The mean absoluate error of SGDRegressor is', mean_absolute_error(ss_y.inverse_transform(y_test), ss_y.inverse_transform(sgdr_y_predict))y

线性回归模型之LinearRegression和SGDRegressor的更多相关文章

  1. Python机器学习/LinearRegression(线性回归模型)(附源码)

    LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($ ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. 【scikit-learn】scikit-learn的线性回归模型

     内容概要 怎样使用pandas读入数据 怎样使用seaborn进行数据的可视化 scikit-learn的线性回归模型和用法 线性回归模型的评估測度 特征选择的方法 作为有监督学习,分类问题是预 ...

  4. 吴裕雄 python 机器学习——线性回归模型

    import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import tra ...

  5. scikit-learn的线性回归模型

    来自 http://blog.csdn.net/jasonding1354/article/details/46340729 内容概要 如何使用pandas读入数据 如何使用seaborn进行数据的可 ...

  6. R语言解读多元线性回归模型

    转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...

  7. R语言解读一元线性回归模型

    转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体 ...

  8. 多元线性回归 ——模型、估计、检验与预测

    一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 ...

  9. 一元线性回归模型与最小二乘法及其C++实现

    原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等), ...

随机推荐

  1. SQLServer2008 使用sql语句访问excel数据

    exec sp_configure 'show advanced options',1  reconfigure  exec sp_configure 'Ad Hoc Distributed Quer ...

  2. 溢出文本省略号的js实现

    function ellipsis(element) { var limitWidth = element.clientWidth; var temp = element.cloneNode(true ...

  3. Oracle数据库基础知识总结(一)

    数据库名.实例名.数据库域名.全局数据库名.服务名,这是几个令很多初学者容易混淆的概念.相信很多初学者都与我一样被标题上这些个概念搞得一头雾水. 我们现在就来把它们弄个明白. 一.数据库名 什么是数据 ...

  4. Visual Studio UI Automation 学习(二)

    今天恰好有时间,继续学习了一下UI Automation的知识.看了两篇博客,对UI Automation有了进一步的了解. https://blog.csdn.net/qq_37546891/art ...

  5. 时序分析:串匹配—Brute-Force算法

    在使用KMP算法之前,使用了BF算法用于串匹配:原文链接已无法查找.....        设有主串s和子串t,子串t的定位就是要在主串s中找到一个与子串t相等的子串.通常把主串s称为目标串,把子串t ...

  6. 【JSP】简单登陆界面

    学生登陆查询系统 1 程序的主要功能及特点 实现一个登录界面的基本功能,具体要求: 登录界面login.jsp含有表单,用户能够输入用户名和密码,并提交表单给verify.jsp. Verify.js ...

  7. java中的位运算及移位运算

    为了方便对二进制位进行操作,Java给我们提供了以下四个二进制位操作符: &    按位与 |     按位或 ^    按位异或 ~    按位取反 Java中有三个移位运算符: 左移:&l ...

  8. webapi部署到IIS 404错误

    环境:win2008r2+IIS 解决方案: 添加一个映射 可执行文件地址(根据系统决定64位可32位): C:\Windows\Microsoft.NET\Framework64\v4.0.3031 ...

  9. sturts2 回顾

    第一个简单的struts2例子: 1.  创建一个web project 2.  导入jar包 具体jar包在struts 的例子中的lib文件夹中copy

  10. Django逻辑关系

    title: Django学习笔记 subtitle: 1. Django逻辑关系 date: 2018-12-14 10:17:28 --- Django逻辑关系 本文档主要基于Django2.2官 ...