uva 104 Arbitrage

Description

Download as PDF

Background

The use of computers in the finance industry has been marked with controversy lately as programmed trading – designed to take advantage of extremely small fluctuations in prices – has been outlawed at many Wall Street firms. The ethics of computer programming is a fledgling field with many thorny issues.

The Problem

Arbitrage is the trading of one currency for another with the hopes of taking advantage of small differences in conversion rates among several currencies in order to achieve a profit. For example, if 1.00inU.S.currencybuys0.7Britishpoundscurrency,£1inBritishcurrencybuys9.5Frenchfrancs,and1Frenchfrancbuys0.16inU.S.dollars,thenanarbitragetradercanstartwith1.00 and earn tex2html_wrap_inline29 dollars thus earning a profit of 6.4 percent.

You will write a program that determines whether a sequence of currency exchanges can yield a profit as described above.

To result in successful arbitrage, a sequence of exchanges must begin and end with the same currency, but any starting currency may be considered.

The Input

The input file consists of one or more conversion tables. You must solve the arbitrage problem for each of the tables in the input file.

Each table is preceded by an integer n on a line by itself giving the dimensions of the table. The maximum dimension is 20; the minimum dimension is 2.

The table then follows in row major order but with the diagonal elements of the table missing (these are assumed to have value 1.0). Thus the first row of the table represents the conversion rates between country 1 and n-1 other countries, i.e., the amount of currency of country i ( tex2html_wrap_inline37 ) that can be purchased with one unit of the currency of country 1.

Thus each table consists of n+1 lines in the input file: 1 line containing n and n lines representing the conversion table.

The Output

For each table in the input file you must determine whether a sequence of exchanges exists that results in a profit of more than 1 percent (0.01). If a sequence exists you must print the sequence of exchanges that results in a profit. If there is more than one sequence that results in a profit of more than 1 percent you must print a sequence of minimal length, i.e., one of the sequences that uses the fewest exchanges of currencies to yield a profit.

Because the IRS (United States Internal Revenue Service) notices lengthy transaction sequences, all profiting sequences must consist of n or fewer transactions where n is the dimension of the table giving conversion rates. The sequence 1 2 1 represents two conversions.

If a profiting sequence exists you must print the sequence of exchanges that results in a profit. The sequence is printed as a sequence of integers with the integer i representing the tex2html_wrap_inline51 line of the conversion table (country i). The first integer in the sequence is the country from which the profiting sequence starts. This integer also ends the sequence.

If no profiting sequence of n or fewer transactions exists, then the line

no arbitrage sequence exists

should be printed.

Sample Input

3

1.2 .89

.88 5.1

1.1 0.15

4

3.1 0.0023 0.35

0.21 0.00353 8.13

200 180.559 10.339

2.11 0.089 0.06111

2

2.0

0.45

Sample Output

1 2 1

1 2 4 1

no arbitrage sequence exists

题目大意:套汇。给你n种货币相互之间的汇率。问你如何转换货币能在最少次数内获得利润。(利润 > 0.01)。

解题思路:.89就是0.89。他所求的不是最大利润,而是最少的获利交换次数。所以遍历交换次数,没个交换次数都算一次获利,当获利超过0.01,递归输出当前路径。用一个三维的dp数据dp[i][j][s],i, j代表由货币i转换到货币j。s代表转换次数,记录的是该情况下的汇率。然后用相似floyd的方式来更新这个数组。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
typedef long long ll;
const int N = 25;
int n;
double rec[N][N][N], dp[N][N][N];
int temp[N];
void printfPath(int i, int j, int s) {
if (s == 0) {
printf("%d", i);
return;
}
printfPath(i, rec[i][j][s], s - 1);
printf(" %d", j);
return;
}
void DP() {
int cnt, flag = 0;
for (int s = 2; s <= n; s++) {
cnt = 0;
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (dp[i][j][s] < dp[i][k][s - 1] * dp[k][j][1]) {
dp[i][j][s] = dp[i][k][s - 1] * dp[k][j][1];
rec[i][j][s] = k;
}
}
}
}
for (int i = 1; i <= n; i++) {
if (dp[i][i][s] - 1.0 > 0.01) {
flag = 1;
printfPath(i, i, s);
printf("\n");
break;
}
}
if (flag) break;
}
if (!flag) printf("no arbitrage sequence exists\n"); }
void input() {
memset(dp, 0, sizeof(dp));
memset(rec, 0, sizeof(rec));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j) dp[i][j][1] = 1;
else scanf("%lf", &dp[i][j][1]);
}
}
}
int main() {
while (scanf("%d", &n) != EOF) {
input();
DP();
}
return 0;
}

uva 104 Arbitrage (DP + floyd)的更多相关文章

  1. UVa 104 - Arbitrage(Floyd动态规划)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. POJ 2240 - Arbitrage(bellman_ford & floyd)

    题意: 给出一些货币和货币之间的兑换比率,问是否可以使某种货币经过一些列兑换之后,货币值增加. 举例说就是1美元经过一些兑换之后,超过1美元.可以输出Yes,否则输出No. 分析: 首先我们要把货币之 ...

  3. 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)

    洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...

  4. uva 509 RAID!(磁盘数据)

    来自 https://blog.csdn.net/su_cicada/article/details/80085318 习题4-7 RAID技术(RAID!, ACM/ICPC World Final ...

  5. 取数字(dp优化)

    取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...

  6. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  7. [Codeforces722E] Research Rover (dp+组合数学)

    [Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...

  8. 【wikioi】2800 送外卖(状压dp+floyd)

    http://www.wikioi.com/problem/2800/ 本题状压莫名其妙的tle了,(按照hzwer大神打的喂,他1000多ms,我就2000ms了?) (14.8.7更,将getnu ...

  9. UVA - 1347 Tour(DP + 双调旅行商问题)

    题意:给出按照x坐标排序的n个点,让我们求出从最左端点到最右短点然后再回来,并且经过所有点且只经过一次的最短路径. 分析:这个题目刘汝佳的算法书上也有详解(就在基础dp那一段),具体思路如下:按照题目 ...

随机推荐

  1. 比较好的Dapper封装的仓储实现类 来源:https://www.cnblogs.com/liuchang/articles/4220671.html

    using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient; usin ...

  2. (转)String StringBuilder StringBuffer 对比 总结得非常好

    来源:http://blog.csdn.net/clam_clam/article/details/6831345 转自:http://www.iteye.com/topic/522167 作者:每次 ...

  3. 路飞学城Python-Day15

    模拟实现一个ATM + 购物商城程序 额度 15000或自定义 实现购物商城,买东西加入 购物车,调用信用卡接口结账 可以提现,手续费5% 支持多账户登录 支持账户间转账 记录每月日常消费流水 提供还 ...

  4. 紫书 例题8-7 UVa 11572(滑动窗口)

    滑动窗口这个方法名字非常形象, 先是窗口的右指针尽量往右滑, 滑不动了就滑窗口的左指针, 滑到右指针又可以开始滑动为止. 这道题是要记录滑的过程中最大的窗口长度, 限制条件是窗口中不能出现重复的值. ...

  5. PKU 2184 Cow Exhibition 01背包

    题意: 有一些牛,每头牛有一个Si值,一个Fi值,选出一些牛,使得max( sum(Si+Fi) ) 并且 sum(Si)>=0, sum(Fi)>=0 思路: 随便选一维做容量(比如Fi ...

  6. 如何成为一个偷懒又高效的Android开发人员

    我敢肯定你对这个标题肯定心存疑惑,但事实就是如此,这个标题完全适合Android开发人员.据我所知, Android程序员不情愿写 findViewById().点击事件监听等重复率较高的代码.那我们 ...

  7. hdu 1166 敌兵布阵 (线段树单点更新)

    敌兵布阵                                                         Time Limit: 2000/1000 MS (Java/Others)  ...

  8. 【翻译自mos文章】开启dblink的 oracle net trace/tracing --对dblink进行跟踪的方法

    开启dblink的 oracle net trace/tracing --对dblink进行跟踪的方法. 參考原文: DBLINK: How to Enable Oracle Net Tracing ...

  9. SVN版本号管理工具使用中常见的代码提交冲突问题的解决方法

    相信刚開始学习使用SVN的小伙伴在项目合作开发的过程中一定常常遇到一些影响到自己编写的代码的苦恼.我这里列举了几种常见的问题以及问题的解决方法: 1.误删除和误操作的问题 问题1:有A和B两个人一块合 ...

  10. nyoj--218--Dinner(语法)

    Dinner 时间限制:100 ms  |  内存限制:65535 KB 难度:1 描述 Little A is one member of ACM team. He had just won the ...