uva 104 Arbitrage

Description

Download as PDF

Background

The use of computers in the finance industry has been marked with controversy lately as programmed trading – designed to take advantage of extremely small fluctuations in prices – has been outlawed at many Wall Street firms. The ethics of computer programming is a fledgling field with many thorny issues.

The Problem

Arbitrage is the trading of one currency for another with the hopes of taking advantage of small differences in conversion rates among several currencies in order to achieve a profit. For example, if 1.00inU.S.currencybuys0.7Britishpoundscurrency,£1inBritishcurrencybuys9.5Frenchfrancs,and1Frenchfrancbuys0.16inU.S.dollars,thenanarbitragetradercanstartwith1.00 and earn tex2html_wrap_inline29 dollars thus earning a profit of 6.4 percent.

You will write a program that determines whether a sequence of currency exchanges can yield a profit as described above.

To result in successful arbitrage, a sequence of exchanges must begin and end with the same currency, but any starting currency may be considered.

The Input

The input file consists of one or more conversion tables. You must solve the arbitrage problem for each of the tables in the input file.

Each table is preceded by an integer n on a line by itself giving the dimensions of the table. The maximum dimension is 20; the minimum dimension is 2.

The table then follows in row major order but with the diagonal elements of the table missing (these are assumed to have value 1.0). Thus the first row of the table represents the conversion rates between country 1 and n-1 other countries, i.e., the amount of currency of country i ( tex2html_wrap_inline37 ) that can be purchased with one unit of the currency of country 1.

Thus each table consists of n+1 lines in the input file: 1 line containing n and n lines representing the conversion table.

The Output

For each table in the input file you must determine whether a sequence of exchanges exists that results in a profit of more than 1 percent (0.01). If a sequence exists you must print the sequence of exchanges that results in a profit. If there is more than one sequence that results in a profit of more than 1 percent you must print a sequence of minimal length, i.e., one of the sequences that uses the fewest exchanges of currencies to yield a profit.

Because the IRS (United States Internal Revenue Service) notices lengthy transaction sequences, all profiting sequences must consist of n or fewer transactions where n is the dimension of the table giving conversion rates. The sequence 1 2 1 represents two conversions.

If a profiting sequence exists you must print the sequence of exchanges that results in a profit. The sequence is printed as a sequence of integers with the integer i representing the tex2html_wrap_inline51 line of the conversion table (country i). The first integer in the sequence is the country from which the profiting sequence starts. This integer also ends the sequence.

If no profiting sequence of n or fewer transactions exists, then the line

no arbitrage sequence exists

should be printed.

Sample Input

3

1.2 .89

.88 5.1

1.1 0.15

4

3.1 0.0023 0.35

0.21 0.00353 8.13

200 180.559 10.339

2.11 0.089 0.06111

2

2.0

0.45

Sample Output

1 2 1

1 2 4 1

no arbitrage sequence exists

题目大意:套汇。给你n种货币相互之间的汇率。问你如何转换货币能在最少次数内获得利润。(利润 > 0.01)。

解题思路:.89就是0.89。他所求的不是最大利润,而是最少的获利交换次数。所以遍历交换次数,没个交换次数都算一次获利,当获利超过0.01,递归输出当前路径。用一个三维的dp数据dp[i][j][s],i, j代表由货币i转换到货币j。s代表转换次数,记录的是该情况下的汇率。然后用相似floyd的方式来更新这个数组。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
typedef long long ll;
const int N = 25;
int n;
double rec[N][N][N], dp[N][N][N];
int temp[N];
void printfPath(int i, int j, int s) {
if (s == 0) {
printf("%d", i);
return;
}
printfPath(i, rec[i][j][s], s - 1);
printf(" %d", j);
return;
}
void DP() {
int cnt, flag = 0;
for (int s = 2; s <= n; s++) {
cnt = 0;
for (int k = 1; k <= n; k++) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (dp[i][j][s] < dp[i][k][s - 1] * dp[k][j][1]) {
dp[i][j][s] = dp[i][k][s - 1] * dp[k][j][1];
rec[i][j][s] = k;
}
}
}
}
for (int i = 1; i <= n; i++) {
if (dp[i][i][s] - 1.0 > 0.01) {
flag = 1;
printfPath(i, i, s);
printf("\n");
break;
}
}
if (flag) break;
}
if (!flag) printf("no arbitrage sequence exists\n"); }
void input() {
memset(dp, 0, sizeof(dp));
memset(rec, 0, sizeof(rec));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j) dp[i][j][1] = 1;
else scanf("%lf", &dp[i][j][1]);
}
}
}
int main() {
while (scanf("%d", &n) != EOF) {
input();
DP();
}
return 0;
}

uva 104 Arbitrage (DP + floyd)的更多相关文章

  1. UVa 104 - Arbitrage(Floyd动态规划)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. POJ 2240 - Arbitrage(bellman_ford & floyd)

    题意: 给出一些货币和货币之间的兑换比率,问是否可以使某种货币经过一些列兑换之后,货币值增加. 举例说就是1美元经过一些兑换之后,超过1美元.可以输出Yes,否则输出No. 分析: 首先我们要把货币之 ...

  3. 洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速$dp\&Floyd$)

    洛谷P3502 [POI2010]CHO-Hamsters感想及题解(图论+字符串+矩阵加速\(dp\&Floyd\)) 标签:题解 阅读体验:https://zybuluo.com/Junl ...

  4. uva 509 RAID!(磁盘数据)

    来自 https://blog.csdn.net/su_cicada/article/details/80085318 习题4-7 RAID技术(RAID!, ACM/ICPC World Final ...

  5. 取数字(dp优化)

    取数字(dp优化) 给定n个整数\(a_i\),你需要从中选取若干个数,使得它们的和是m的倍数.问有多少种方案.有多个询问,每次询问一个的m对应的答案. \(1\le n\le 200000,1\le ...

  6. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  7. [Codeforces722E] Research Rover (dp+组合数学)

    [Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...

  8. 【wikioi】2800 送外卖(状压dp+floyd)

    http://www.wikioi.com/problem/2800/ 本题状压莫名其妙的tle了,(按照hzwer大神打的喂,他1000多ms,我就2000ms了?) (14.8.7更,将getnu ...

  9. UVA - 1347 Tour(DP + 双调旅行商问题)

    题意:给出按照x坐标排序的n个点,让我们求出从最左端点到最右短点然后再回来,并且经过所有点且只经过一次的最短路径. 分析:这个题目刘汝佳的算法书上也有详解(就在基础dp那一段),具体思路如下:按照题目 ...

随机推荐

  1. eclipse历史版本下载地址

    http://wiki.eclipse.org/Older_Versions_Of_Eclipse

  2. 常用的字符串方法 String ;

      字符串: 1,str.charAt(num);//根据下标查找字符串中对应的字符,返回对应下标的字符; 2,str.charCodeAt(num);//字符串中下标对应的那位字符的 Unicode ...

  3. fwupdate-efi 与 grub2-common 冲突

    在CentOS-7Minimal系统中使用命令如下命令yum groupinstall -y "GNOME Desktop"安装 图形界面时提示:fwupdate-efi 与 gr ...

  4. 关于JWT(Json Web Token)的思考及使用心得

    什么是JWT? JWT(Json Web Token)是一个开放的数据交换验证标准rfc7519(php 后端实现JWT认证方法一般用来做轻量级的API鉴权.由于许多API接口设计是遵循无状态的(比如 ...

  5. 紫书 例题 10-4 UVa 10791(唯一分解定理)

    首先分解,然后可以发现同一个因子ai不能存在于两个以上的数中 因为求的是最小公倍数,如果有的话就可以约掉 所以数字必然由ai的pi次方的乘积组成,那么显然,在 a最小为2,而b大于2的情况下a*b&g ...

  6. 紫书 习题11-11 UVa 1644 (并查集)

    这道题感觉思路非常巧妙, 我是看了别人的博客才想明白的. 这里用到了并查集, 以根节点为中心城市, 然后把边从大到小排序, 每次的当前的边即为容量, 因为是目前的最小值, 然后去算总的容量, 每次选容 ...

  7. Multi-Byte Character Set & Unicode Character Set

    本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/49592361 编程时遇到BUG:err ...

  8. 洛谷—— P1855 榨取kkksc03

    https://www.luogu.org/problem/show?pid=1855 题目描述 洛谷2的团队功能是其他任何oj和工具难以达到的.借助洛谷强大的服务器资源,任何学校都可以在洛谷上零成本 ...

  9. 洛谷 P1702 突击考试

    P1702 突击考试 题目描述 一日,老师决定进行一次突击考试.已知每个学生都有一个考试能力等级,教室里一共有N个课桌,按照顺序排成一列,每张课桌可以坐两个人,第i张课桌坐的两个人的能力等级为(A[i ...

  10. EularProject 42:单词解码出来的三角形数

    Coded triangle numbers Problem 42 The nth term of the sequence of triangle numbers is given by, tn = ...