Source:

PAT A1126 Eulerian Path (25 分)

Description:

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian

Keys:

Attention:

  • 判断图的连通性与顶点度的奇偶性即可

Code:

 /*
Data: 2019-06-01 19:33:52
Problem: PAT_A1126#Eulerian Path
AC: 56:58 题目大意:
欧拉路径可以访问图中所有的边且各边仅访问一次,欧拉回路是起点和终点相同的欧拉路径;
已知各顶点均含有偶数条边的图可构成欧拉回路,该图称作欧拉图;
若只有两个顶点含有奇数条边的图可构成欧拉路径,并且这两个结点作为欧拉路径的起点和终点;
含有欧拉路径但不含欧拉回路的图,称作半欧拉图
现在给定一个图,判断其是否为欧拉图
输入:
第一行给出,顶点数N<=500,边数M
接下来M行给出各边
输出:
第一行给出,各顶点边数
第二行给出,非欧拉图,半欧拉图,欧拉图 基本思路:
先判断含有奇数边顶点的数目,
再判断图的连通性,
若含有无奇数边顶点,且连通图,则为欧拉图
若含有两条奇数边顶点,且图连通,则为半欧啦图
否则,为非欧拉图
*/ #include<cstdio>
#include<algorithm>
using namespace std;
const int M=,INF=1e9;
int grap[M][M],vis[M],in[M],n,sum=; void DFS(int v)
{
vis[v]=;
sum++;
for(int u=; u<=n; u++)
if(vis[u]== && grap[u][v]!=INF)
DFS(u);
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif fill(in,in+M,);
fill(vis,vis+M,);
fill(grap[],grap[]+M*M,INF);
int m,v1,v2,cnt=;
scanf("%d%d", &n,&m);
for(int i=; i<m; i++)
{
scanf("%d%d", &v1,&v2);
grap[v1][v2]=;
grap[v2][v1]=;
in[v1]++;
in[v2]++;
}
for(int i=; i<=n; i++){
printf("%d%c", in[i], i==n?'\n':' ');
if(in[i]%==) cnt++;
}
DFS();
if(cnt== && sum==n)
printf("Semi-Eulerian\n");
else if(cnt== && sum==n)
printf("Eulerian\n");
else printf("Non-Eulerian\n"); return ;
}

PAT_A1126#Eulerian Path的更多相关文章

  1. Graph | Eulerian path

    In graph theory, a Eulerian trail (or Eulerian path) is a trail in a graph which visits every edge e ...

  2. PAT1126:Eulerian Path

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  3. A1126. Eulerian Path

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  4. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  5. 1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  6. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  7. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  8. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  9. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

随机推荐

  1. .net performance optimize your C# app 读书笔记

    目录 序 作者简介 推荐人简介 感谢 本书简介 第一章  性能指标 第二章  性能测量 第三章  内部类型 第四章  垃圾回收机制 第五章  集合和泛型 第六章  并发和并行性 第七章  网络.I / ...

  2. [Jest] Use property matchers in snapshot tests with Jest

    With the right process in place, snapshot tests can be a great way to detect unintended changes in a ...

  3. Android Studio第一次启动的Fetching android sdk component information的问题

    1)进入刚安装的Android Studio文件夹下的bin文件夹.找到idea.properties文件,用文本编辑器打开. 2)在idea.properties文件末尾加入一行: disable. ...

  4. 利用jQuery设计横/纵向菜单

    在网页中,菜单扮演着"指路者"的角色.怎样设计一个人性化的菜单呢.以下小编带着大家一起做. 效果图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi ...

  5. ORACLE-017:SQL优化-is not null和nvl

    今天在优化一段sql,原脚本大致例如以下: select a.字段n from tab_a a where a.字段2 is not null; a.字段2添加了索引的,可是查询速度很慢. 于是做了例 ...

  6. luogu1991 无线通讯网

    题目大意 国防部计划用无线网络连接若干个边防哨所.2 种不同的通讯技术用来搭建无线网络:每个边防哨所都要配备无线电收发器:有一些哨所还可以增配卫星电话.任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有 ...

  7. 【POJ 2248】 Addition Chain

    [题目链接] http://poj.org/problem?id=2248 [算法] 搜索剪枝 剪枝1 : 优化搜索顺序,从大到小枚举 剪枝2 : Ai + Aj可能相等,只需搜一次即可 剪枝3 : ...

  8. 运行项目psychologicalTest

    [mysql] # 设置mysql客户端默认字符集 default-character-set=utf8 [mysqld] #设置3306端口 port = 3306 # 设置mysql的安装目录 b ...

  9. 虚拟机下不能运行gazebo

    bug描述: VMware: vmw_ioctl_command error Invalid argument. 解决方式:设置环境变量 export SVGA_VGPU10=0 或者 echo &q ...

  10. BZOJ 1407 exgcd

    思路: 数据范围不大.. 那我们就枚举M好了.. 再两两判断一下有没有冲突 怎么判断呢? exgcd!!! p[i]*k+c[i]=p[j]*k+c[j]  (mod m) (p[j]-p[i])*k ...