PAT_A1126#Eulerian Path
Source:
Description:
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)
Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).
Output Specification:
For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either
Eulerian,Semi-Eulerian, orNon-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.
Sample Input 1:
7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6
Sample Output 1:
2 4 4 4 4 4 2
Eulerian
Sample Input 2:
6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6
Sample Output 2:
2 4 4 4 3 3
Semi-Eulerian
Sample Input 3:
5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3
Sample Output 3:
3 3 4 3 3
Non-Eulerian
Keys:
Attention:
- 判断图的连通性与顶点度的奇偶性即可
Code:
/*
Data: 2019-06-01 19:33:52
Problem: PAT_A1126#Eulerian Path
AC: 56:58 题目大意:
欧拉路径可以访问图中所有的边且各边仅访问一次,欧拉回路是起点和终点相同的欧拉路径;
已知各顶点均含有偶数条边的图可构成欧拉回路,该图称作欧拉图;
若只有两个顶点含有奇数条边的图可构成欧拉路径,并且这两个结点作为欧拉路径的起点和终点;
含有欧拉路径但不含欧拉回路的图,称作半欧拉图
现在给定一个图,判断其是否为欧拉图
输入:
第一行给出,顶点数N<=500,边数M
接下来M行给出各边
输出:
第一行给出,各顶点边数
第二行给出,非欧拉图,半欧拉图,欧拉图 基本思路:
先判断含有奇数边顶点的数目,
再判断图的连通性,
若含有无奇数边顶点,且连通图,则为欧拉图
若含有两条奇数边顶点,且图连通,则为半欧啦图
否则,为非欧拉图
*/ #include<cstdio>
#include<algorithm>
using namespace std;
const int M=,INF=1e9;
int grap[M][M],vis[M],in[M],n,sum=; void DFS(int v)
{
vis[v]=;
sum++;
for(int u=; u<=n; u++)
if(vis[u]== && grap[u][v]!=INF)
DFS(u);
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif fill(in,in+M,);
fill(vis,vis+M,);
fill(grap[],grap[]+M*M,INF);
int m,v1,v2,cnt=;
scanf("%d%d", &n,&m);
for(int i=; i<m; i++)
{
scanf("%d%d", &v1,&v2);
grap[v1][v2]=;
grap[v2][v1]=;
in[v1]++;
in[v2]++;
}
for(int i=; i<=n; i++){
printf("%d%c", in[i], i==n?'\n':' ');
if(in[i]%==) cnt++;
}
DFS();
if(cnt== && sum==n)
printf("Semi-Eulerian\n");
else if(cnt== && sum==n)
printf("Eulerian\n");
else printf("Non-Eulerian\n"); return ;
}
PAT_A1126#Eulerian Path的更多相关文章
- Graph | Eulerian path
In graph theory, a Eulerian trail (or Eulerian path) is a trail in a graph which visits every edge e ...
- PAT1126:Eulerian Path
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- A1126. Eulerian Path
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- PAT A1126 Eulerian Path (25 分)——连通图,入度
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- 1126 Eulerian Path (25 分)
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- PAT甲级 1126. Eulerian Path (25)
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- PAT 甲级 1126 Eulerian Path
https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...
- PAT 1126 Eulerian Path[欧拉路][比较]
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- PAT甲级——1126 Eulerian Path
我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...
随机推荐
- 关于Openstack的浅层次认知
Openstack浅析 英文好的应该直接跳到官方文档去看相关的介绍,以下是具体介绍的连接,包含Openstack的具体架构: http://docs.openstack.org/kilo/instal ...
- 用CSS3实现带有阴影效果和颜色渐变的按钮
这里讲下如何利用css3里的两个新属性 box-shadow和transition来实现如下所示的带有阴影和颜色渐变效果的按钮(下面这个只是图片:本想直接在这个页面下嵌html的,,试了后发现有些cs ...
- Ambarella SDK build 步骤解析
Make Target Options make命令如下: make <Tab> <Tab> /*列出所有支持的目标(命令行输入make, 再按两下Tab键)*/ make & ...
- Git Stash方法
命令:git stash1.使用git stash 保存当前的工作现场, 那么就可以切换到其他分支进行工作,或者在当前分支上完成其他紧急的工作,比如修订一个bug测试提交. 2.如果一个使用了一个gi ...
- 洛谷 P3112 后卫马克 —— 状压DP
题目:https://www.luogu.org/problemnew/show/P3112 状压DP...转移不错. 代码如下: #include<iostream> #include& ...
- 杂项-Java:JNI
ylbtech-杂项-Java:JNI JNI是Java Native Interface的缩写,它提供了若干的API实现了Java和其他语言的通信(主要是C&C++).从Java1.1开始, ...
- acc文件的运行
1.method 1: use "acc" >acc hello.acc world.mc <--- compilation will generate the hel ...
- Django day15 (二) csrf的 跨站请求伪造 与 局部禁用 , 局部使用
一: csrf 的跨站请求伪造 二: csrf 的局部禁用 , 局部使用
- DotNetCasClient加载失败问题分析
最近公司在接入整理单点登录方案的时候,选择了CAS方案,实际版本采用了4.0.当我们把服务端附属完毕,基于.NET平台Web版的客户端DotNetCasClient进行定制化修改后,在测试环境通过.然 ...
- 【LuoguP2210 USACO】 Haywire
这种答案跟序列排列顺序有关的,n比较小的(稍微大一点的也可以),求最优解的,一般都可以随机化过 随机化不一定是模拟退火或是什么遗传蚁群 哪怕只是直接随机化一个序列,只要你随机的次数够多,它都能找到正解 ...