题目描述

LYK有一张无向图G={V,E},这张无向图有n个点m条边组成。并且这是一张带权图,不仅有边权还有点权。

LYK给出了一个子图的定义,一张图G’={V’,E’}被称作G的子图,当且仅当

·G’的点集V’包含于G的点集V。

·对于E中的任意两个点a,b∈V’,当(a,b)∈E时,(a,b)一定也属于E’,并且连接这两个点的边的边权是一样的。

LYK给一个子图定义了它的价值,它的价值为:点权之和与边权之和的比。

LYK想找到一个价值最大的非空子图,所以它来找你帮忙啦。

输入格式(graph.in)

第一行两个数n,m表示一张n个点m条边的图。

第二行n个数ai表示点权。

接下来m行每行三个数u,v,z,表示有一条连接u,v的边权为z的无向边。数据保证任意两个点之间最多一条边相连,并且不存在自环。

输出格式(graph.out)

你需要输出这个价值最大的非空子图的价值,由于它是一个浮点数,你只需要保留小数点后两位有效数字。

输入样例

3 3

2 3 4

1 2 3

1 3 4

2 3 5

输出样例

1.67

样例解释

选择1,2两个点,则价值为5/3=1.67。

对于20%的数据n=2

对于50%的数据n<=5

对于100%的数据1<=n,m<=100000,1<=ai,z<=1000。

分析:对于前50%的数据我们只需要枚举每个点选或不选就可以了.在搜索的时候打个表,就能看出一点规律:最后一定只选两个点!

为什么呢?观察这样一个图:

如果选所有点,那么答案为(a+b+c)/(d + e),如果选上面一部分的点,那么答案为(a + c) / d,选取下面一部分点答案为(c + b) / e,可以证明,选取上面或者选取下面总有一个答案比选取整个要大,所以我们每次选更小的子图,直到只剩下两个点,这两个点肯定是点权和/边权最大的两个点.

如果数据跳的特别大,那么很有可能就是有规律,先从小数据暴力打表,最后推移到大数据上,再转化为小数据来做.

#include <bits/stdc++.h>

using namespace std;

int n,m,a[];

struct node
{
int u,v,w;
double p;
}e[]; bool cmp(node a,node b)
{
return a.p < b.p;
} int main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
scanf("%d%d",&n,&m);
for (int i = ; i <= n; i++)
scanf("%d",&a[i]);
for (int i = ; i <= m; i++)
{
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
e[i].p = (double)(a[e[i].u] + a[e[i].v]) / e[i].w;
}
sort(e + ,e + + m,cmp);
printf("%.2lf",e[m].p); return ;
}

清北学堂模拟赛d1t4 一道图论好题(graph)的更多相关文章

  1. 清北学堂模拟赛d2t1 一道图论神题(god)

    题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,只有点权. LYK想把这个图删干净,它的方法是这样的.每次选择一个点,将它删掉,但删这个点是需要代价的.假 ...

  2. 清北学堂模拟赛d6t3 反击数

    分析:显然是一道数位dp题,不过需要一些奇怪的姿势.常规的数位dp能统计出一个区间内满足条件的数的个数,可是我们要求第k个,怎么办呢?转化为经典的二分问题,我们二分当前数的大小,看它是第几大的,就可以 ...

  3. 清北学堂模拟赛day7 数字碰撞

    /* clj:水题别人都满分你不是你就完了,所以说水题一定要细心一点,有这么几个细节:①前导零的处理,全是零的时候要特判②换行要注意,不要多大一行,剩下就是水水的模拟了 */ #include< ...

  4. 清北学堂模拟赛d2t6 分糖果(candy)

    题目描述总共有n颗糖果,有3个小朋友分别叫做L,Y,K.每个小朋友想拿到至少k颗糖果,但这三个小朋友有一个共同的特点:对3反感.也就是说,如果某个小朋友拿到3颗,13颗,31颗,333颗这样数量的糖果 ...

  5. 清北学堂模拟赛d2t4 最大值(max)

    题目描述LYK有一本书,上面有很多有趣的OI问题.今天LYK看到了这么一道题目:这里有一个长度为n的正整数数列ai(下标为1~n).并且有一个参数k.你需要找两个正整数x,y,使得x+k<=y, ...

  6. 清北学堂模拟赛d2t2 位运算2(bit)

    题目描述LYK拥有一个十进制的数N.它赋予了N一个新的意义:不考虑N的符号,将N每一位都拆开来后再加起来就是N所拥有的价值.例如数字123拥有6的价值,数字999拥有27的价值,数字-233拥有8的价 ...

  7. 清北学堂模拟赛d1t6 或和异或(xor)

    题目描述 LYK最近在研究位运算,它研究的主要有两个:or和xor.(C语言中对于|和^) 为了更好的了解这两个运算符,LYK找来了一个2^n长度的数组.它第一次先对所有相邻两个数执行or操作,得到一 ...

  8. 清北学堂模拟赛d5t6 cube

    题面有误!10,11,12操作类别为A,13,14,15类别为B,16,17,18类别为C. 分析:一道大暴力,每次记录一下走了多少步,上一步操作类别是啥就可以了.最后只需要写6种操作,每一次操作进行 ...

  9. 清北学堂模拟赛d3t2 b

    分析:一道比较让人头疼的数学题. 先考虑怎么让分出来的三角形相似,先不考虑每个三角形的具体边长,设每个三角形的周长为li,则可知必然有一个数g = gcd{li},每一个三角形的周长都是g的倍数,这样 ...

随机推荐

  1. PCB SQL SERVER 枚举分割函数(枚举值分解函数)

    在SQL SERVER字段采用枚举值作为字段后,如果直接查看字段的值是很难判断这个字段的带表什么意思, 在这里介绍如用函数的方法实现枚举值分割,只有分割后才很方便知道枚举值的意思. 一.问题说明 1. ...

  2. Linux特殊符号及基础正则表达式

    第1章 特殊符号 1.1 引号系列 1.1.1 单引号 所见即所得  单引号里面的内容会原封不动的输出 [root@oldboyedu50-lnb ~]# echo 'oldboy $LANG $PS ...

  3. .net 必看书籍2

    一.入门 1.<HTML与CSS入门经典(第7版) >HTML入门 点评:html语言的入门,由于html极其简单所以同类其他书也可代替,本书并非经典,本书摆在这里纯属占位!你可以用其他书 ...

  4. Nginx 配置https请求

    通过阿里云生成指定的https证书文件xxxx.key 和 xxxx.pem文件 在阿里云上申请的https证书的是pem格式,转成cer 先在终端cd到文件目录下 然后 openssl x509 - ...

  5. 自己做的一个android 音视频播放器

    欢迎大家下载: http://download.csdn.net/detail/q610098308/8504335

  6. html表单——使用frameset写一个导航栏效果

    主页面: <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4 ...

  7. 传值:web.xml传递参数 即在Servlet中获取web.xml里的值

    传值:web.xml传递参数 在web.xml中的Servlet里配置多个init-param <servlet> ... <init-param> <param-nam ...

  8. Ambari?自动部署Hadoop集群

    自动部署?Ambari Ambari 跟 Hadoop 等开源软件一样,也是 Apache Software Foundation 中的一个项目,并且是顶级项目.就 Ambari 的作用来说,就是创建 ...

  9. HTML+CSS(12)

    n  CSS浮动和清除 Float:让元素浮动,取值:left(左浮动).right(右浮动). Clear:清除浮动,取值:left(清除左浮动).right(清除右浮动).both(同时清除上面的 ...

  10. WEB开发模式浅析

    WEB技术随着互联网的崛起而崛起,又随着移动互联网的发展而呈现更加多样化的趋势. 黑暗时代:大约在2005年以前,所谓的WEB开发主要还是美工的活,HTML/CSS占主导,Dreamwaver做为页面 ...