花神的数论题 bzoj-3209

题目大意:sum(i)表示i的二进制表示中1的个数,求$\prod\limits_{i=1}^n sum(i)$

注释:$1\le n\le 10^{15}$。

想法:喷一下题目...神tm数论题,明明是个dp。

显然,如果稍微打个表的话就可以发现,有很多数的sum是相等的,我们不想重复乘这么多次,所以我们想到将所有sum相等的数弄到一起然后快速幂。这样,就不难想到数位dp

状态:dp[i][j]表示i位,sum值是j的个数。

转移是容易的,按照数位dp的边界特判就行了。

最后,附上丑陋的代码... ...

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long int ll;
const int MAXN=60+5;
const ll mod=10000007;
ll n, Ans;
ll C[MAXN][MAXN];
int l,wei[MAXN];
void pre()
{
for (int i=0;i<=60;++i)
C[i][0]=1;
for(int i=1;i<=60;i++)
for(int j=1;j<=i;++j)
C[i][j]=C[i-1][j-1]+C[i-1][j];
}
ll Solve(int x)
{
ll sum=0;
for(int i=l;i>=1;i--)
{
if(wei[i]==1)
{
sum+=C[i-1][x];
--x;
}
if(x<0) break;
}
return sum;
}
ll quick_power(ll x,ll y)
{
ll ans=1;
while(y)
{
if(y&1) ans=(ans*x)%mod;
y>>=1;
x=(x*x)%mod;
}
return ans;
}
int main()
{
pre();
scanf("%lld",&n);
++n;
l=0;
while(n)
{
wei[++l]=n&1;
n>>=1;
}
Ans=1ll;
for(int i=1;i<=l;i++)
{
Ans=Ans*quick_power(i,Solve(i))%mod;
}
printf("%lld\n",Ans);
return 0;
}

小结:有意思...别被题面迷惑了(@EdwardFrog)

[bzoj3209]花神的数论题_数位dp的更多相关文章

  1. [Bzoj3209]花神的数论题(数位dp)

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 1182[Submit][Status][Disc ...

  2. bzoj3209 花神的数论题 (二进制数位dp)

    二进制数位dp,就是把原本的数字转化成二进制而以,原来是10进制,现在是二进制来做,没有想像的那么难 不知到自己怎么相出来的...感觉,如果没有一个明确的思路,就算做出来了,也并不能锻炼自己的能力,因 ...

  3. 2018.10.27 bzoj3209: 花神的数论题(数位dp)

    传送门 数位dpdpdp经典题. 题面已经暗示了我们按照二进制位来数位dpdpdp. 直接dpdpdp多少个数有111个111,222个111,333个111-, 然后快速幂算就行了. 于是我们枚举前 ...

  4. 【洛谷】4317:花神的数论题【数位DP】

    P4317 花神的数论题 题目背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 题目描述 话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我 ...

  5. 【BZOJ3209】花神的数论题(数位DP)

    点此看题面 大致题意: 设\(sum(i)\)表示\(i\)二进制中1的个数,请求出\(\prod_{i=1}^n sum(i)\). 数位\(DP\) 很显然,这是一道数位\(DP\)题.我们可以先 ...

  6. BZOJ 3209: 花神的数论题【数位dp】

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  7. BZOJ_3209_花神的数论题_组合数+数位DP

    BZOJ_3209_花神的数论题_组合数+数位DP Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又 ...

  8. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

  9. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

随机推荐

  1. Recommended Settings for Tracing and Message Logging

    https://docs.microsoft.com/en-us/dotnet/framework/wcf/diagnostics/tracing/recommended-settings-for-t ...

  2. Head First 设计模式 —— 策略设计模式

    创建一个能够根据所传递的参数对象的不同而具有不同行为(动态绑定的多态机制)的方法,被称为策略设计模式.

  3. bzoj 1029 [ JSOI 2007 ] 建筑抢修 —— 贪心

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1029 想不出来贪心... 首先把任务按结束时间排序: 因为任务一定是越提前做越好,所以从头开 ...

  4. MySQL-基础操作之增删改查

    1.增 (1)创建数据库dks create database dks; (2)创建名为t1的表,并指定引擎和字符集: ) not null,ages int) engine=innodb defau ...

  5. Python 35 进程间的通信(IPC机制)、生产者消费者模型

    一:进程间的通信(IPC):先进先出  管道:队列=管道+锁 from multiprocessing import Queue q=Queue(4) q.put(['first',],block=T ...

  6. 使用Github做服务器展示前端页面

    1)在github上创建自己一个项目,项目名称必须是你的github账号名.github.io  譬如 fk123456.github.io 因为我已经创建了,所以显示名字重复. 2)使用命令行的方式 ...

  7. mybatis一对多关系的关联查询

    问题描述:实现两张表的关联查询 学生表: 班级表: 要实现学生管理信息中有所在班级的名称,即如下图所示 1.对应学生表的pojo类写全班级表中的字段(适用于要连接的表字段较少的情况) sql语句直接在 ...

  8. 如何在linux下搭建svn服务

    • 安装svn 使用命令 yum install subversion 如果提示上述错误,请以管理员身份运行 使用命令su root 再执行 yum install subversion 2,查看sv ...

  9. android黑科技系列——Apk混淆成中文语言代码

    一.前言 最近想爆破一个app,没有加壳,简单的使用Jadx打开查看源码,结果把我逗乐了,代码中既然都是中文,而且是一些比较奇葩的中文字句,如图所示: 瞬间感觉懵逼了,这app真会玩,我们知道因为Ja ...

  10. 实验8 标准模板库STL

    一.实验目的与要求: 了解标准模板库STL中的容器.迭代器.函数对象和算法等基本概念. 掌握STL,并能应用STL解决实际问题. 二.实验过程: 完成实验8标准模板库STL中练习题,见:http:// ...