Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数。。于是老师留了一道题:P2624 [HNOI2008]明明的烦恼
qwq要用高精。。。
于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可还行OvO)
首先前置知识:$Prufer序列$
然后,因为对于一个$ Prufer $序列有$n-2$ 项,而每个点的度数-1是这个点在$ Prufer$ 序列中出现的次数
所以。。。这不是多重集的排列吗(不懂多重集?)
所以我们成功了一半(雾)
在计算时会爆$ long \space long $ 所以要拆分成质因数,然后去删除(反正不会T)
#include<cstdio>
#include<iostream>
#define ll long long
#define R register ll
using namespace std;
const int N=;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,m,tot,cnt;
int r[N],num[N],pri[N];
ll fac[],ans=;
bool v[N];
inline void PRI() {
for(R i=;i<=N-;++i) {
if(!v[i]) pri[++cnt]=i;
for(R j=;j<=cnt&&i*pri[j]<=N-;++j) {
v[i*pri[j]]=true; if(i%pri[j]==) break;
}
}
}
inline void calc(ll x,int vl) {
for(R i=;i<=cnt;++i) {
if(x==) return ;
while(x%pri[i]==) num[i]+=vl,x/=pri[i];
}
}
signed main() { PRI(); fac[]=fac[]=;
for(R i=;i<=;++i) fac[i]=fac[i-]*i;
n=g(); if(n==) {
R x=g(); if(!x) printf("1\n");
else printf("0\n");
return ;
} for(R i=;i<=n;++i) {
r[i]=g(); if(!r[i]) {printf("0\n"); return ;}
--r[i]; tot+=r[i];
} if(tot!=n-) {printf("0\n"); return ;}
calc(fac[n-],); for(R i=;i<=n;++i) calc(fac[r[i]],-);
for(R i=;i<=cnt;++i) while(--num[i]>=) ans*=pri[i];
printf("%lld\n",ans);
}
2019.05.16
Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数的更多相关文章
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...
- LUOGU P2290 [HNOI2004]树的计数(组合数,prufer序)
传送门 解题思路 \(prufer\)序,就是所有的不同的无根树,都可以转化为唯一的序列.做法就是每次从度数为\(1\)的点中选出一个字典序最小的,把这个点删掉,并把这个点相连的节点加入序列,直到只剩 ...
- bzoj1211: [HNOI2004]树的计数 prufer序列裸题
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...
- BZOJ1211: [HNOI2004]树的计数(prufer序列)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2987 Solved: 1111[Submit][Status][Discuss] Descript ...
- [HNOI2004] 树的计数 - prufer序列
给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...
- P2290 [HNOI2004]树的计数
P2290 [HNOI2004]树的计数prufer序列模板题 #include <iostream> #include <cstdio> #include <queue ...
- P2290 [HNOI2004]树的计数(bzoj1211)
洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...
- 树的计数 + prufer序列与Cayley公式(转载)
原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...
随机推荐
- 错误名称:Uncaught SyntaxError: Unexpected token <
在AngularJS框架下: 控制台输出: 1.谷歌:Uncaught SyntaxError: Unexpected token < 2.火狐:SyntaxError: expected ...
- ACM学习历程—POJ3565 Ants(最佳匹配KM算法)
Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on apple trees ...
- VBScript 内置函数
本页列出了所有内建的 VBScript 函数: Date/Time 函数 Conversion 函数 Format 函数 Math 函数 Array 函数 String 函数 其他函数 Date/Ti ...
- poj 2187 Beauty Contest —— 旋转卡壳
题目:http://poj.org/problem?id=2187 学习资料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...
- HDOJ1024(最大M子段和)
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- MongoDB分析工具之一:explain()语句分析工具
explain(),语句分析工具 MongoDB 3.0之后,explain的返回与使用方法与之前版本有了很大的变化,介于3.0之后的优秀特色和我们目前所使用给的是3.0.7版本,本文仅针对Mongo ...
- Spark Streaming之六:Transformations 普通的转换操作
与RDD类似,DStream也提供了自己的一系列操作方法,这些操作可以分成四类: Transformations 普通的转换操作 Window Operations 窗口转换操作 Join Opera ...
- Java变量初始化的讲解
首先需要说明的是Java中的变量分为两种:成员变量和局部变量 其中成员变量又可分为:实例变量(非静态变量)和类变量(静态变量) 局部变量(局部变量的作用时间很短,所以一般是存储在栈中的): 1.形参在 ...
- k8s组件简介
Kubernetes is constructed using several components, as follows:f Kubernetes masterf Kubernetes nodes ...
- css 雪碧图
CSS Sprites在国内很多人叫css精灵,是一种网页图片应用处理方式.它允许你将一个页面涉及到的所有零星图片都包含到一张大图中去,这样一来,当访问 该页面时,载入的图片就不会像以前那样一幅一幅地 ...