最近碰了$prufer$ 序列和组合数。。于是老师留了一道题:P2624 [HNOI2008]明明的烦恼

qwq要用高精。。。

于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可还行OvO)


首先前置知识:$Prufer序列$

然后,因为对于一个$ Prufer $序列有$n-2$ 项,而每个点的度数-1是这个点在$ Prufer$ 序列中出现的次数

所以。。。这不是多重集的排列吗(不懂多重集?

所以我们成功了一半(雾)

在计算时会爆$ long \space long $ 所以要拆分成质因数,然后去删除(反正不会T)

#include<cstdio>
#include<iostream>
#define ll long long
#define R register ll
using namespace std;
const int N=;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,m,tot,cnt;
int r[N],num[N],pri[N];
ll fac[],ans=;
bool v[N];
inline void PRI() {
for(R i=;i<=N-;++i) {
if(!v[i]) pri[++cnt]=i;
for(R j=;j<=cnt&&i*pri[j]<=N-;++j) {
v[i*pri[j]]=true; if(i%pri[j]==) break;
}
}
}
inline void calc(ll x,int vl) {
for(R i=;i<=cnt;++i) {
if(x==) return ;
while(x%pri[i]==) num[i]+=vl,x/=pri[i];
}
}
signed main() { PRI(); fac[]=fac[]=;
for(R i=;i<=;++i) fac[i]=fac[i-]*i;
n=g(); if(n==) {
R x=g(); if(!x) printf("1\n");
else printf("0\n");
return ;
} for(R i=;i<=n;++i) {
r[i]=g(); if(!r[i]) {printf("0\n"); return ;}
--r[i]; tot+=r[i];
} if(tot!=n-) {printf("0\n"); return ;}
calc(fac[n-],); for(R i=;i<=n;++i) calc(fac[r[i]],-);
for(R i=;i<=cnt;++i) while(--num[i]>=) ans*=pri[i];
printf("%lld\n",ans);
}

2019.05.16

Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数的更多相关文章

  1. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

  2. 【BZOJ1005/1211】[HNOI2008]明明的烦恼/[HNOI2004]树的计数 Prufer序列+高精度

    [BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可 ...

  3. LUOGU P2290 [HNOI2004]树的计数(组合数,prufer序)

    传送门 解题思路 \(prufer\)序,就是所有的不同的无根树,都可以转化为唯一的序列.做法就是每次从度数为\(1\)的点中选出一个字典序最小的,把这个点删掉,并把这个点相连的节点加入序列,直到只剩 ...

  4. bzoj1211: [HNOI2004]树的计数 prufer序列裸题

    一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di ...

  5. BZOJ1211: [HNOI2004]树的计数(prufer序列)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2987  Solved: 1111[Submit][Status][Discuss] Descript ...

  6. [HNOI2004] 树的计数 - prufer序列

    给定树每个节点的 degree,问满足条件的树的数目. \(n\leq 150, ans \leq 10^{17}\) Solution 注意特判各种坑点 \(\sum d_i - 1 = n-2\) ...

  7. P2290 [HNOI2004]树的计数

    P2290 [HNOI2004]树的计数prufer序列模板题 #include <iostream> #include <cstdio> #include <queue ...

  8. P2290 [HNOI2004]树的计数(bzoj1211)

    洛谷P2290 [HNOI2004]树的计数 bzoj1211 [HNOI2004]树的计数 Description 一个有\(n\)个结点的树,设它的结点分别为\(v_1,v_2,\cdots, v ...

  9. 树的计数 + prufer序列与Cayley公式(转载)

    原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博 ...

随机推荐

  1. AngularJS方法 —— angular.copy

    描述: 复制一个对象或者一个数组(好吧,万物皆对象,数组也是一个对象). 如果省略了destination,一个新的对象或数组将会被创建出来: 如果提供了destination,则source对象中的 ...

  2. 【LeetCode】081. Search in Rotated Sorted Array II

    题目: Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed? Would t ...

  3. git常见使用情境整理

    一.版本回退 回退到某个commit版本的方法如下: 1. 查看commit历史 git log 找到想要回退的版本的号码,eg:f765889 2. 回退到该版本 git reset f765889 ...

  4. java代码简单练习

    总结: package com.ds; import java.awt.Color; import java.awt.FlowLayout; import javax.swing.JFrame; im ...

  5. JVM体系结构之三:方法区之1

    一.简介 方法区在JVM中也是一个非常重要的区域,它与堆一样,是被线程共享的区域.在方法区中,存储了每个类的信息(包括类的名称.方法信息.字段信息).静态变量.常量以及编译器编译后的代码等. 方法区( ...

  6. 多校联合训练&hdu5791 Two

    hdu5791 dp[i][j]表示的是序列A前i个数字和序列B前j个数字的公共子序列的总个数,那么的dp公式就可以这么表示 理解一下此公式若最尾部的a[i]和b[j]相等的话,那么单独的a[i]和b ...

  7. 三 akka学习 actor的例子

    (转载: http://blog.csdn.net/chenleixing/article/details/44044243 ) Java并发编程的4种风格:Threads,Executors,For ...

  8. TS学习之基础类型

    1.布尔值 let isDone:boolean = false 2.数字(支持二,八,十,十六进制) let width:number = 20 3.字符串 let name:string = &q ...

  9. 为什么并行测试很困难以及如何使用 ConTest 辅助测试

    众所周知并行程序设计易于产生 bug.更为严重的是,往往在开发过程的晚期当这些并行 bug 引起严重的损害时才能发现它们并且难于调试它们.即使彻底地对它们进行了调试,常规的单元测试实践也很可能遗漏并行 ...

  10. 1. sqlmap超详细笔记+思维导图

    sqlmap思维导图: 基本操作笔记: -u #注入点 -f #指纹判别数据库类型 -b #获取数据库版本信息 -p #指定可测试的参数(?page=1&id=2 -p "page, ...