Robberies

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 23142    Accepted Submission(s): 8531

Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

 
Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 
Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

 
Sample Input
3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 
Sample Output
2
4
6
 
 
 
题意:Roy想要抢劫银行,每家银行多有一定的金额和被抓到的概率,知道Roy被抓的最大概率P,求Roy在被抓的情况下,抢劫最多。

分析:被抓概率可以转换成安全概率,Roy的安全概率大于1-P时都是安全的。抢劫的金额为0时,肯定是安全的,所以d[0]=1;其他金额初始为最危险的所以概率全为0;
注意:不要误以为精度只有两位。
?:为什么要求安全概率呢?
 #include<iostream>
#include<cstdio>
#include<cmath>
#define MAXN 101
#define MAXV 10001 using namespace std; int cost[MAXN];
double weight[MAXV],d[MAXV]; int main()
{
int test,sumv,n,i,j;
double P;
cin>>test;
while(test--)
{
scanf("%lf %d",&P,&n);
P=-P;
sumv=;
for(i=;i<n;i++)
{
scanf("%d %lf",&cost[i],&weight[i]);
weight[i]=-weight[i];
sumv+=cost[i];
}
for(i=;i<=sumv;i++)
d[i]=;
d[]=;
for(i=;i<n;i++)
{
for(j=sumv;j>=cost[i];j--)
{
d[j]=max(d[j],d[j-cost[i]]*weight[i]);
}
}
bool flag=false;
for(i=sumv;i>=;i--)
{
if(d[i]-P>0.000000001)
{
printf("%d\n",i);
break;
}
}
}
return ;
}

hdu 2955 Robberies(01背包)的更多相关文章

  1. hdu 2955 Robberies (01背包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 思路:一开始看急了,以为概率是直接相加的,wa了无数发,这道题目给的是被抓的概率,我们应该先求出总的 ...

  2. hdu 2955 Robberies 0-1背包/概率初始化

    /*Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  3. HDU 2955 Robberies(01背包变形)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. hdu 2955 Robberies (01背包好题)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. HDU——2955 Robberies (0-1背包)

    题意:有N个银行,每抢一个银行,可以获得\(v_i\)的前,但是会有\(p_i\)的概率被抓.现在要把被抓概率控制在\(P\)之下,求最多能抢到多少钱. 分析:0-1背包的变形,把重量变成了概率,因为 ...

  6. HDU 2955 Robberies --01背包变形

    这题有些巧妙,看了别人的题解才知道做的. 因为按常规思路的话,背包容量为浮点数,,不好存储,且不能直接相加,所以换一种思路,将背包容量与价值互换,即令各银行总值为背包容量,逃跑概率(1-P)为价值,即 ...

  7. HDU 2955 Robberies(01背包)

    Robberies Problem Description The aspiring Roy the Robber has seen a lot of American movies, and kno ...

  8. HDOJ 2955 Robberies (01背包)

    10397780 2014-03-26 00:13:51 Accepted 2955 46MS 480K 676 B C++ 泽泽 http://acm.hdu.edu.cn/showproblem. ...

  9. HDU 2955 【01背包/小数/概率DP】

    Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  10. HDOJ.2955 Robberies (01背包+概率问题)

    Robberies 算法学习-–动态规划初探 题意分析 有一个小偷去抢劫银行,给出来银行的个数n,和一个概率p为能够逃跑的临界概率,接下来有n行分别是这个银行所有拥有的钱数mi和抢劫后被抓的概率pi, ...

随机推荐

  1. 配置LANMP环境(9)-- 安装Git与vsftp

    一.安装Git 检查是否已经安装 git --version 安装 yum -y install git 二.安装vsftp 检查是否已经安装 yum list installed vsftpd 安装 ...

  2. [转]基于Python的接口测试框架

    http://blog.csdn.net/wyb199026/article/details/51485322 背景 最近公司在做消息推送,那么自然就会产生很多接口,测试的过程中需要调用接口,我就突然 ...

  3. XtraBackup备份mysql5.1.73

    一.基础介绍 mysql5.1在源码中配备了两个版本的innodb存储引擎源码:innobase和innodb_plugin,编译安装的时候可以通过参数--with-plugins=innobase, ...

  4. 解决Discuz安装时报错“该函数需要 php.ini 中 allow_url_fopen 选项开启…”

    开启php的fsockopen函数 —— 解决DZ论坛安装问题“该函数需要 php.ini 中 allow_url_fopen 选项开启.请联系空间商,确定开启了此项功能 在安装dz论坛时遇到因为fs ...

  5. lucas定理证明

    Lucas 定理(证明) A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]. 则组合数C(A,B)与C(a[n],b[n])* ...

  6. Spring @Configuration注解

    1 该注解的用途 这个注解表示这个类可以作为spring ioc容器bean的来源,其本质上它是对xml文件中创建bean的一种替换.有了这个注释,Spring framework就能在需要的时候构造 ...

  7. PhotoKit详解

    Photokit介绍 这篇主要介绍如何通过 Photokit获取数据 photokit.jpg 1,基类 PHObject Photos 框架中的根类PHObject只有一个公开接口 localIde ...

  8. python基础-第九篇-9.2线程与多线程

    单线程 import time beginTime = time.time() for a in range(10): print(a) time.sleep(1) shijian = time.ti ...

  9. java面试之数据库面试知识点【转】

    1. 主键 超键 候选键 外键 主 键: 数据库表中对储存数据对象予以唯一和完整标识的数据列或属性的组合.一个数据列只能有一个主键,且主键的取值不能缺失,即不能为空值(Null). 超 键: 在关系中 ...

  10. Nodejs课堂笔记-第四课 Dynamodb为何物

    本文由Vikings(http://www.cnblogs.com/vikings-blog/) 原创,转载请标明.谢谢! 我喜欢带着目标来学习新知识.因此学习nodejs过程中,不喜欢只看枯燥的语法 ...