bzoj 2969: 矩形粉刷 概率期望
题目:
为了庆祝新的一年到来,小M决定要粉刷一个大木板。大木板实际上是一个W*H的方阵。小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形全部刷好。小M乐坏了,于是开始胡乱地使用这个工具。
假设小M每次选的两个格子都是完全随机的(方阵中每个格子被选中的概率是相等的),而且小M使用了K次工具,求木板上被小M粉刷过的格子个数的期望值是多少。
题解:
我们发现我们无法直接进行概率期望dp
因为状态无法记录.
而在这道题中被染色的格子的位置不同也决定着不同的状态.
所以我们考虑转化问题,我们可以分别计算出每个格子k次后被染成黑色的概率.
然后我们求概率之和即为期望.
所以我们把问题转化成了求概率。
因为我们要求的是一个格子k次操作后被染成黑色的概率,而每次操作是染色一个子矩阵.
直接不好计算,所以考虑补集转化.
我们统计每个点在k次操作后仍然没有被染成黑色的概率。然后用1减即可。
至于怎么计算k次操作后没有被染成黑色的概率,我们算出一次染色没有被染到的概率.
再求k次方既可.
一次染色没有被染到的概率瞎XX搞一下就好了.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
int n,m;
#define sqr(x) ((x)*(x))
inline double calc(int i,int j){
double upside = .0;
upside += sqr(1.0*n*(j-1)) + sqr(1.0*(i-1)*m);
upside += sqr(1.0*(n-i)*m) + sqr(1.0*n*(m-j));
upside -= sqr(1.0*(i-1)*(j-1)) + sqr(1.0*(n-i)*(m-j));
upside -= sqr(1.0*(i-1)*(m-j)) + sqr(1.0*(n-i)*(j-1));
double dnside = sqr(1.0*n*m);
return upside/dnside;
}
inline double qpow(double x,int p){
double ret = 1.0;
for(;p;p>>=1,x=x*x) if(p&1) ret=ret*x;
return ret;
}
int main(){
int T;T = 1;
while(T--){
int k;read(k);read(n);read(m);
double ans = .0;
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j){
ans += 1.0 - qpow(calc(i,j),k);
}
}
printf("%.0f\n",ans);
}
return 0;
}
bzoj 2969: 矩形粉刷 概率期望的更多相关文章
- bzoj 2969: 矩形粉刷 概率期望+快速幂
还是老套路:期望图上的格子数=$\sum$ 每个格子被涂上的期望=$\sum$1-格子不被图上的概率 这样的话就相对好算了. 那么,对于 $(i,j)$ 来说,讨论一下上,下,左,右即可. 然后发现四 ...
- BZOJ 2969: 矩形粉刷(期望)
BZOJ 2969: 矩形粉刷(期望) 题意: 给你一个\(w*h\)的方阵,不断在上面刷格子.每次等概率选择方阵中的两个点(可以相同)将以这两个点为端点的矩形(边平行于矩形边界)进行染色.共染\(k ...
- bzoj2969 矩形粉刷 概率期望
此题在bzoj是权限题,,,所以放另一个oj的链接 题解: 因为期望线性可加,所以可以对每个方格单独考虑贡献.每个方格的贡献就为至少被粉刷过一次的概率×1(每个格子的最大贡献就是1...)每个方格至少 ...
- 【BZOJ2969】矩形粉刷 概率+容斥
[BZOJ2969]矩形粉刷 Description 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以 ...
- bzoj 4832 抵制克苏恩 概率期望dp
考试时又翻车了..... 一定要及时调整自己的思路!!! 随从最多有7个,只有三种,所以把每一种随从多开一维 so:f[i][j][k][l]为到第i次攻击前,场上有j个1血,k个2血,l个3血随从的 ...
- bzoj 2510: 弱题 概率期望dp+循环矩阵
题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- uvalive 7331 Hovering Hornet 半平面交+概率期望
题意:一个骰子在一个人正方形内,蜜蜂在任意一个位置可以出现,问看到点数的期望. 思路:半平面交+概率期望 #include<cstdio> #include<cstring> ...
- OI队内测试一【数论概率期望】
版权声明:未经本人允许,擅自转载,一旦发现将严肃处理,情节严重者,将追究法律责任! 序:代码部分待更[因为在家写博客,代码保存在机房] 测试分数:110 本应分数:160 改完分数:200 T1: 题 ...
随机推荐
- CF#256(Div.2) A. Rewards
A. Rewards time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- URAL 1181 Cutting a Painted Polygon【递归+分治】
题目: http://acm.timus.ru/problem.aspx?space=1&num=1181 http://acm.hust.edu.cn/vjudge/contest/view ...
- elasticsearch从入门到出门-04-入门的几个需求练手
第一个分析需求:计算每个tag下的商品数量 GET /ecommerce/product/_search{ "aggs": { "group_by_tags&qu ...
- debian dhcp配置
1 将/etc/network/interfaces中设置成dhcp auto eth0iface eth0 inet dhcp 2 重启网络服务 /etc/init.d/networking res ...
- js打开新窗口: window.open
var iWidth = 800; var iHeight = 600; var iLeft = (window.screen.width - 10 - iWidth) / 2; //获得窗口的水平位 ...
- Django 视图之CBV
CBV 所谓的CBV(class base view) 在视图里面,用类的方式来写逻辑 那么对于FBV,CBV有什么优势? CBV(class base views) 就是在视图里使用类处理请求. P ...
- Action获取表单数据的三种方式
1.使用ActionContext类获取 示例 获取用户提交的用户名和密码 jsp页面 action中的java代码 2.使用ServletActionContext类获取 jsp页面 Java代码 ...
- Unity 武器拖尾效果
Pocket RPG Weapon Trails 武器拖尾效果 Asset Store地址:https://www.assetstore.unity3d.com/en/#!/content/2458 ...
- Spring之AOP由浅入深(转发:https://www.cnblogs.com/zhaozihan/p/5953063.html)
1.AOP的作用 在OOP中,正是这种分散在各处且与对象核心功能无关的代码(横切代码)的存在,使得模块复用难度增加.AOP则将封装好的对象剖开,找出其中对多个对象产生影响的公共行为,并将其封装为一个可 ...
- 2个canvas叠加运用(时钟例子)
最近在学习canvas,http://corehtml5canvas.com/code-live/,主要的学习方式就是通过上面的一些例子来学习canvas的一些用法.但是我发现,这里的例子,只要can ...