【51nod1705】七星剑(成环DP)
大致题意: 你要把一把剑从0星升至7星,有n颗宝石供你选择,第i颗宝石的价值是c[i],用第i颗宝石将剑从k-1星升至k星的成功率是prob[k][i],而失败后会掉lose[k][i],要你求出将剑升至7星的期望花费。
题解
看到这题,自然而然地就会想到用动态规划来做,而转移方程其实也很好推:
f[i]=min(f[i],f[i-1]+c[j]+(1-prob[i][j])*(f[i]-f[i-1-lose[i][j]));
其中f[i]表示将剑升至i星的期望花费。
就这么简单?
\(But\ wait\ a\ minute...\)
在转移方程中左边和右边同时出现了\(f[i]\)!
这就是传说中的成环\(DP\)。
那么成环\(DP\)该怎么做呢?
其实在这道题目中有一个很简单的方法:移项。没错,就是我们初一上学期就接触过的移项。
通过移项,原转移方程就变成了
f[i]=min(f[i],(f[i-1]+c[j]-(1-prob[i][j])*f[i-1-lose[i][j]])/prob[i][j]);
这样不就直接水过了吗!(顺便吐槽一下\(N≤100\)这样的数据范围真是太水了)
代码
#include<bits/stdc++.h>
#define LL long long
#define min(x,y) ((x)<(y)?(x):(y))
#define N 100
using namespace std;
int n,c[N+5],lose[10][N+5];
double prob[10][N+5],f[10];
int read()
{
int x=0,f=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if(ch=='-') f=-1,ch=getchar();
while(ch>='0'&&ch<='9') (x*=10)+=ch-'0',ch=getchar();
return x*f;
}
int main(register int i,register int j,bool flag,bool ff)
{
for(n=read(),i=1;i<=n;c[i++]=read());
for(i=1,ff=true;i<=7;(flag?0:ff=false),++i)
for(j=1,flag=false;j<=n;scanf("%lf",&prob[i][j]),flag|=prob[i][j++]>0.0);
if(!ff) return puts("-1"),0;//判断是否存在不可能的情况
for(i=1;i<=7;++i)
for(j=1;j<=n;lose[i][j++]=read());
for(i=1;i<=7;++i)//DP过程,理解了再打真的很简单
for(f[i]=1e18,j=1;j<=n;++j)
f[i]=min(f[i],(f[i-1]+c[j]-(1-prob[i][j])*f[i-1-lose[i][j]])/prob[i][j]);
return printf("%.8lf",f[7]),0;
}
【51nod1705】七星剑(成环DP)的更多相关文章
- 51Nod 1705 七星剑
一道很新颖的概率DP,我看数据范围还以为是有指数级别的复杂度的呢 记得有人说期望要倒着推,但放在这道题上,就咕咕了吧. 我们考虑正着概率DP,设\(fi\)表示将剑升到\(i\)颗星花费的期望,这样我 ...
- bzoj1023
研究了一下仙人掌首先,仙人掌虽然不是树,但却有很强的树的既视感如果把每个环都看做一个点,那么他就是一棵树当然这不能直接缩环,因为环和环可以有一个交点如果是树,求直径都会做,令f[i]表示i到子树的最长 ...
- Luogu P3953 逛公园(最短路+记忆化搜索)
P3953 逛公园 题面 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 \(N\) 个点 \(M\) 条边构成的有向图,且没有自环和重边.其中 \(1\) 号点是公园的入口,\(N\) 号点是公 ...
- 51NOD 1705 七星剑 [DP 期望的线性性质]
传送门 题意: 七颗星,第$i$课星用第$j$个宝石有$p[i][j]$的概率成功,失败将为$g[i][j]$颗星: 第$j$个宝石化费$c[j]$ 求最小期望化费 $MD$本来自己思路挺对的看了半天 ...
- 成环的概率dp(初级) zoj 3329
原题地址:https://vjudge.net/problem/ZOJ-3329 题目大意: 有三个骰子,分别有k1,k2,k3个面,初始分数是0.第i骰子上的分数从1道ki.当掷三个骰子的点数分别为 ...
- zoj3329--One Person Game(概率dp第六弹:形成环的dp,带入系数,高斯消元)
One Person Game Time Limit: 1 Second Memory Limit: 32768 KB Special Judge There is a very ...
- HDU 4652 Dice:期望dp(成环)【错位相减】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4652 题意: 给你一个有m个面的骰子. 两种询问: (1)"0 m n": “最后 ...
- ZOJ 3329 One Person Game:期望dp【关于一个点成环——分离系数】
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意: 给你面数分别为k1,k2,k3的三个骰子. 给定a ...
- ZOJ Problem Set - 3329(概率DP)
One Person Game Time Limit: 1 Second Memory Limit: 32768 KB Special Judge There is a very ...
随机推荐
- [poj 1837] Balance dp
Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...
- 洛谷P3068 [USACO13JAN]派对邀请函Party Invitations
P3068 [USACO13JAN]派对邀请函Party Invitations 题目描述 Farmer John is throwing a party and wants to invite so ...
- java整理(二)
1.this关键字.this表示属性,表示方法和当前对象. this.属性调用属性. 方法分为两类,构造方法和普通方法,他们的调用形式是不同的.调用本类的方法this.方法()(这是调用普通方法)如果 ...
- 帝都Day5——依旧是数据结构
/*Day1.Day2我尽量整理吧*/ 树状数组 树状数组滋瓷单点修改和前缀查询 加特技可以使得树状数组支持更多操作. c[2n+1]=a[2n+1](奇数就是它本身) c[2n]≠a[2n](偶数不 ...
- gitlab web客户端的使用
3.2.1 新建项目 3.2.2 初始化项目(git init) 正如上图显示的,gitlab会给我们相应的命令供我们使用(需要安装客户端).初始化一个项目可以是一个新建的空项目,也可以是一个已经存在 ...
- JavaScript和jquery中的宽度
Javascript: 网页可见区域宽: document.body.clientWidth 网页可见区域高: document.body.clientHeight 网页可见区域宽: document ...
- Linux系统下强制其他用户下线
强制其他用户下线命令格式:pkill -kill -t tty 解释: pkill -kill -t 强制其他用户下线命令 tty 强制其他用户下线的TTY 如上强制其他用户下线的命令为: pkill ...
- PHP 获取acm近期比赛
<?php // author: Moore Jiang. ini_set('display_errors',1); //错误信息 ini_set('display_startup_errors ...
- springMvc配置 中文api
http://7xvpsh.com1.z0.glb.clouddn.com/publish/21-2/the-dispatcher-servlet.html springmvc4.1.7:配置 复制转 ...
- string去空格方法
String str = " asd "; String ntr = ("A" + str).trim().substring(1);//将头部加一个字符再用t ...