POJ3252 Round Numbers 【数位dp】
题目链接
题解
为什么每次写出数位dp都如此兴奋?
因为数位dp太苟了
因为我太弱了
设\(f[i][0|1][cnt1][cnt0]\)表示到二进制第\(i\)位,之前是否达到上界,前面已经有\(cnt1\)个\(1\),\(cnt0\)个\(0\)时的方案数
显然当\(cnt1 = 0\)时就不存在任何前导数字了
然后就记忆化搜索 分类讨论各种转移
【为什么我写得好麻烦QAQ是不是我姿势不对】
#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define cls(s) memset(s,0,sizeof(s))
#define mp(a,b) make_pair<int,int>(a,b)
#define cp pair<int,int>
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int bit[maxn],vis[33][2][33][33];
LL f[33][2][33][33];
LL cal(int n,int lim,int cnt1,int cnt0){
if (!n) return cnt0 >= cnt1;
if (vis[n][lim][cnt1][cnt0]) return f[n][lim][cnt1][cnt0];
vis[n][lim][cnt1][cnt0] = true;
LL& re = f[n][lim][cnt1][cnt0];
if (!lim && !cnt1) return re = cal(n - 1,0,1,0) + cal(n - 1,0,0,0);
else if (!lim){
int tot = cnt1 + cnt0 + n,least = (tot & 1) ? (tot >> 1) + 1 : (tot >> 1);
least = least - cnt0;
if (least <= 0) return re = (1 << n);
LL C = 1;
for (int i = 1; i <= n; i++){
C = C * (n - i + 1) / i;
if (i >= least) re += C;
}
return re;
}
else if (!cnt1){
if (!bit[n]) return re = cal(n - 1,1,0,0);
else return re = cal(n - 1,1,1,0) + cal(n - 1,0,0,0);
}
else {
if (!bit[n]) return re = cal(n - 1,1,cnt1,cnt0 + 1);
else return re = cal(n - 1,1,cnt1 + 1,cnt0) + cal(n - 1,0,cnt1,cnt0 + 1);
}
}
LL solve(int x){
cls(f); cls(vis);
int n = 0,tmp = x;
while (tmp) bit[++n] = (tmp & 1),tmp >>= 1;
return cal(n,1,0,0);
}
int main(){
int a = read(),b = read();
if (a > b) swap(a,b);
printf("%lld\n",solve(b) - solve(a - 1));
return 0;
}
POJ3252 Round Numbers 【数位dp】的更多相关文章
- POJ3252 Round Numbers —— 数位DP
题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Su ...
- poj3252 Round Numbers (数位dp)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- poj3252 Round Numbers[数位DP]
地址 拆成2进制位做dp记搜就行了,带一下前导0,将0和1的个数带到状态里面,每种0和1的个数讨论一下,累加即可. WA记录:line29. #include<iostream> #inc ...
- 【poj3252】 Round Numbers (数位DP+记忆化DFS)
题目大意:给你一个区间$[l,r]$,求在该区间内有多少整数在二进制下$0$的数量$≥1$的数量.数据范围$1≤l,r≤2*10^{9}$. 第一次用记忆化dfs写数位dp,感觉神清气爽~(原谅我这个 ...
- [poj3252]Round Numbers_数位dp
Round Numbers poj3252 题目大意:求一段区间内Round Numbers的个数. 注释:如果一个数的二进制表示中0的个数不少于1的个数,我们就说这个数是Round Number.给 ...
- poj 3252 Round Numbers(数位dp 处理前导零)
Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...
- 4-圆数Round Numbers(数位dp)
Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 14947 Accepted: 6023 De ...
- POJ 3252 Round Numbers(数位dp&记忆化搜索)
题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...
- POJ - 3252 - Round Numbers(数位DP)
链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...
- Round Numbers(数位DP)
Round Numbers http://poj.org/problem?id=3252 Time Limit: 2000MS Memory Limit: 65536K Total Submiss ...
随机推荐
- C++ 编写的解码器小程序 map
c++ prime 5 ex11_4 代码如下 // ex11_4_word_transform.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h&quo ...
- POJ2154 Color(Polya定理)
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11654 Accepted: 3756 Description Bead ...
- DB设计工具——dbschema
Preface I've got a db design job about meeting room booking system last week.There're many s ...
- Docker虚拟化容器的使用
Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后发布到任何流行的 Li ...
- OracleWeblogic12C安装教程
一,安装WebLogic Server 1. 双击exe安装文件 2.准备安装文件 3. 生成向导序列 4. 选择安装路径 5. 开始安装 经过以上步骤,weblogic已经成功安装到了你的电脑上,但 ...
- Lucene简单总结
Lucene API Document Document:文档对象,是一条原始数据 文档编号 文档内容 1 谷歌地图之父跳槽FaceBook 2 谷歌地图之父加盟FaceBook 3 谷歌地图创始人拉 ...
- DNS无法区域传送(axfr,ixfr)
这两天博主在学习dns服务器的配 首先简单介绍一下axfr,ixfr axfr:完全区域传送 ixfr :增量区域传送 主要是在dns主从服务器上面进行备份更新的. ----------------- ...
- TouTiao开源项目 分析笔记7 加载数据的过程
1.以新闻页中的段子数据显示为例 1.1.首先执行InitApp==>SplashActivity. 因为在AndroidManifest.xml中定义了一个<intent-filter& ...
- J.U.C 系列 Tools之Executors
上个章节说了Tools中的其他四个工具类,本节我们来看一看工具类中的老大Executors,为什么说它是老大,肯定是因为他的功能最多最强大. 一 Executors是什么 Executors 是一个线 ...
- 二、mysql数据库之基本操作和存储引擎
一.知识储备 数据库服务器:一台计算机(对内存要求比较高) 数据库管理系统:如mysql,是一个软件 数据库:oldboy_stu,相当于文件夹 表:student,scholl,class_list ...