题目描述

Farmer John has a large farm with NN barns (1 \le N \le 10^51≤N≤105 ), some of which are already painted and some not yet painted. Farmer John wants to paint these remaining barns so that all the barns are painted, but he only has three paint colors available. Moreover, his prize cow Bessie becomes confused if two barns that are directly reachable from one another are the same color, so he wants to make sure this situation does not happen.

It is guaranteed that the connections between the NN barns do not form any 'cycles'. That is, between any two barns, there is at most one sequence of connections that will lead from one to the other.

How many ways can Farmer John paint the remaining yet-uncolored barns?

输入输出格式

输入格式:

The first line contains two integers NN and KK (0 \le K \le N0≤K≤N ), respectively the number of barns on the farm and the number of barns that have already been painted.

The next N-1N−1 lines each contain two integers xx and yy (1 \le x, y \le N, x \neq y1≤x,y≤N,x≠y ) describing a path directly connecting barns xx and yy .

The next KK lines each contain two integers bb and cc (1 \le b \le N1≤b≤N , 1 \le c \le 31≤c≤3 ) indicating that barn bb is painted with color cc .

输出格式:

Compute the number of valid ways to paint the remaining barns, modulo 10^9 + 7109+7 , such that no two barns which are directly connected are the same color.

输入输出样例

输入样例#1:

4 1
1 2
1 3
1 4
4 3 输出样例#1: 
8

树上dp求相邻节点不同的染色方案。
已染色的就把该节点的其他颜色的方案数置为0即可。
(这个难度评价有毒,把我骗进来了hhhh)
#include<bits/stdc++.h>
#define ll long long
#define maxn 100005
#define pb push_back
using namespace std;
const int ha=1000000007;
vector<int> g[maxn];
int f[maxn][4],col[maxn];
int n,m,k,ans; inline int add(int x,int y){
x+=y;
if(x>=ha) return x-ha;
else return x;
} void dfs(int x,int fa){
f[x][1]=f[x][2]=f[x][3]=1; int to,tmp;
for(int i=g[x].size()-1;i>=0;i--){
to=g[x][i];
if(to==fa) continue; dfs(to,x); tmp=add(f[to][1],add(f[to][2],f[to][3]));
for(int j=1;j<=3;j++) f[x][j]=f[x][j]*(ll)add(tmp,ha-f[to][j])%ha;
} if(col[x]){
for(int i=1;i<=3;i++) if(i!=col[x]) f[x][i]=0;
}
} int main(){
int uu,vv;
scanf("%d%d",&n,&k);
for(int i=1;i<n;i++){
scanf("%d%d",&uu,&vv);
g[uu].pb(vv),g[vv].pb(uu);
}
for(int i=1;i<=k;i++){
scanf("%d%d",&uu,&vv);
col[uu]=vv;
} dfs(1,0); ans=add(add(f[1][2],f[1][1]),f[1][3]);
printf("%d\n",ans); return 0;
}

  


[USACO17DEC] Barn Painting的更多相关文章

  1. [USACO17DEC]Barn Painting (树形$dp$)

    题目链接 Solution 比较简单的树形 \(dp\) . \(f[i][j]\) 代表 \(i\) 为根的子树 ,\(i\) 涂 \(j\) 号颜色的方案数. 转移很显然 : \[f[i][1]= ...

  2. [USACO17DEC] Barn Painting - 树形dp

    设\(f[i][j]\)为\(i\)子树,当\(i\)为\(j\)时的方案数 #include <bits/stdc++.h> using namespace std; #define i ...

  3. Luogu4084 [USACO17DEC]Barn Painting (树形DP)

    数组越界那个RE+WA的姹紫嫣红的... 乘法原理求种类数,类似于没有上司的舞会. #include <iostream> #include <cstdio> #include ...

  4. [USACO 2017DEC] Barn Painting

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=5141 [算法] 树形DP 时间复杂度 : O(N) [代码] #include< ...

  5. 我的刷题单(8/37)(dalao珂来享受切题的快感

    P2324 [SCOI2005]骑士精神 CF724B Batch Sort CF460C Present CF482A Diverse Permutation CF425A Sereja and S ...

  6. 2021record

    2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...

  7. [学习笔记]树形dp

    最近几天学了一下树形\(dp\) 其实早就学过了 来提高一下打开树形\(dp\)的姿势. 1.没有上司的晚会 我的人生第一道树形\(dp\),其实就是两种情况: \(dp[i][1]\)表示第i个人来 ...

  8. [USACO19FEB]Painting the Barn G

    题意 \(n\)个矩阵\((0\le x_1,y_1,x_2,y_2\le 200)\),可交,可以再放最多两个矩阵(这两个矩阵彼此不交),使得恰好被覆盖\(k\)次的位置最大.\(n,k\le 10 ...

  9. 洛谷 P5542 [USACO19FEB]Painting The Barn

    题目传送门 解题思路: 二维差分的板子题.题解传送门 AC代码: #include<iostream> #include<cstdio> using namespace std ...

随机推荐

  1. Python全栈工程师(面向对象)

    ParisGabriel                每天坚持手写  一天一篇  决定坚持几年 为了梦想为了信仰    开局一张图 Python人工智能从入门到精通 day16补充: 异常处理 文件 ...

  2. CentOS 6.3安装配置LAMP服务器(Linux+Apache+MySQL+PHP5)

    服务器系统环境:CentOS 6.3 客户端系统环境:Windows 7 ultimate(x86)sp1 简体中文旗舰版 ※  本文档描述了如何在Linux服务器配置Apache.Mysql.PHP ...

  3. [译]如何去除pandas dataframe里面的Unnamed的列?

    原文来源: https://stackoverflow.com/questions/43983622/remove-unnamed-columns-in-pandas-dataframe 问:我有一个 ...

  4. fragment中的WebView返回上一页

    public final class Text1Fm extends Fragment { static WebView mWeb; private View mContentView; privat ...

  5. HDU 3549 基础网络流EK算法 Flow Problem

    欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit ...

  6. 01、JAVA开发准备

    一.首先要认识几个名词: 1. JRE(Java Runtime Environment ,JAVA运行环境):它包含Java虚拟机(JVM,Java Virtual Machine)和Java程序所 ...

  7. 整合S2SH框架

    S2SH框架(Struts2,Spring,Hibernate)整合 Struts2.Hibernate和Spring.其中在Struts2部分主要为MVC设计思想,Struts2的处理流程及配置,S ...

  8. 【转】PHP的执行原理/执行流程

    简介 先看看下面这个过程: 我们从未手动开启过PHP的相关进程,它是随着Apache的启动而运行的: PHP通过mod_php5.so模块和Apache相连(具体说来是SAPI,即服务器应用程序编程接 ...

  9. IPv4地址分类及特征

    IPv4地址分类及特征 IP地址后斜杠和数字代表的意思 其中有这样一个IP地址的格式:IP/数字,例如:111.222.111.222/24 这种格式平时在内网中用的不多,所以一下子看不懂,最后查了资 ...

  10. TCP面试题之三次握手过程

    TCP简介: 1.面向连接的.可靠的.基于字节流的传输层的通信协议: 2.将应用层的数据流分割成报文段并发送给目标节点的TCP层: 3.数据包都有序号,对方收到则发送ACK确认,未收到则重传: 4.使 ...