Andrew Ng CS229 讲义: https://pan.baidu.com/s/12zMYBY1NLzkluHNeMNO6MQ

HMM模型常用于NLP、语音等领域。

  • 马尔科夫模型(Markov Model)

只有状态序列z。状态转移矩阵A。

有限视野假设(limited horizon assumption),Markov性:

静态过程假设(stationary process assumption),参数时不变性:

两个问题:1)概率问题,2)学习问题

问题1)概率问题:已知转移矩阵A,求某观测状态序列z的概率是多少

根据有限视野假设,

带入计算即可。

问题2)学习问题:已知观测状态序列z,求参数A最大化z出现的概率

使用最大似然估计,最大化log似然函数

即求解问题

转化为Lagrange multipliers

分别对参数求偏导并令其为零:

代入得到状态转移矩阵A的估计:

  • 隐马尔科夫模型(Hidden Markov Model)

状态序列z,观测序列x。状态转移矩阵A,发射(生成输出)矩阵B。

输出独立假设(output independence assumption):

三个问题:1)概率问题,2)解码问题,3)学习问题

1)概率问题:已知转移矩阵A、发射矩阵B,求观测序列x的概率 - 前向算法

根据输出独立假设,

更快的做法是动态规划,即前向算法

定义

重新推导概率:

类似地,对应有后向算法

2)解码问题:已知转移矩阵A、发射矩阵B,观测序列x,求状态序列z的概率 - Viterbi算法

使用贝叶斯定理:

更快的做法同样是动态规划。和前向算法不同的地方在于,使用最大化操作代替求和操作,即Viterbi算法。也就是说,现在是跟踪最大化见过的观测子序列的概率,而不是前向算法是对见过的观测子序列的概率全部求和。

3)学习问题:已知观测序列x,求转移矩阵A、发射矩阵B - Baum-Welch算法(前向-后向算法)

可以理解x是一个很长的序列,和通常的监督学习问题不同在于并非是批量的label-feature样本。

状态序列是隐变量序列。根据EM算法,E步找一个下界逼近目标函数,M步调整参数最大化这个下界:

转化为Lagrange multipliers:

分别对参数求偏导并令其为零:

代入得到参数A,B的估计:

对A的分子部分使用bayes定理并用前向算法和后向算法转化:

A的分母部分类似:

综合得到A的估计:

同理得到B的估计:

实际计算中直接计算充分统计量 

和通常的EM求解的问题类似,也是非凸问题,容易陷入局部极值。因此需要做不同的初始化运行多次算法。另外,对于没有样本覆盖到A、B的转移或发射概率的实际问题,需要做平滑操作。

Hidden Markov Models笔记的更多相关文章

  1. 隐马尔科夫模型(Hidden Markov Models)

    链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...

  2. PRML读书会第十三章 Sequential Data(Hidden Markov Models,HMM)

    主讲人 张巍 (新浪微博: @张巍_ISCAS) 软件所-张巍<zh3f@qq.com> 19:01:27 我们开始吧,十三章是关于序列数据,现实中很多数据是有前后关系的,例如语音或者DN ...

  3. 机器学习 Hidden Markov Models 1

    Introduction 通常,我们对发生在时间域上的事件希望可以找到合适的模式来描述.考虑下面一个简单的例子,比如有人利用海草来预测天气,民谣告诉我们说,湿漉漉的海草意味着会下雨,而干燥的海草意味着 ...

  4. 机器学习 Hidden Markov Models 2

    Hidden Markov Models 下面我们给出Hidden Markov Models(HMM)的定义,一个HMM包含以下几个要素: ∏=(πi)表示初始状态的向量.A={aij}状态转换矩阵 ...

  5. 隐马尔科夫模型(Hidden Markov Models) 系列之三

    转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个 ...

  6. [Bayesian] “我是bayesian我怕谁”系列 - Markov and Hidden Markov Models

    循序渐进的学习步骤是: Markov Chain --> Hidden Markov Chain --> Kalman Filter --> Particle Filter Mark ...

  7. 机器学习 Hidden Markov Models 3

    Viterbi Algorithm 前面我们提到过,HMM的第二类问题是利用HMM模型和可观察序列寻找最有可能生成该观察序列的隐藏变量的序列.简单来说,第一类问题是通过模型计算生成观察序列的概率,而第 ...

  8. 隐马尔科夫模型(Hidden Markov Models) 系列之五

    转自:http://blog.csdn.net/eaglex/article/details/6458541 维特比算法(Viterbi Algorithm) 找到可能性最大的隐藏序列 通常我们都有一 ...

  9. 隐马尔科夫模型(Hidden Markov Models) 系列之四

    转自:http://blog.csdn.net/eaglex/article/details/6430389 前向算法(Forward Algorithm) 一.如果计算一个可观察序列的概率?   1 ...

随机推荐

  1. Entity Framework Tutorial Basics(25):Delete Single Entity

    Delete Entity using DBContext in Disconnected Scenario: We used the Entry() method of DbContext to m ...

  2. Entity Framework Tutorial Basics(15):Querying with EDM

    Querying with EDM: We have created EDM, DbContext, and entity classes in the previous sections. Here ...

  3. KMS激活工具

    工具介绍 KMS_VL_ALL,国外MDL论坛的一款KMS激活工具,可自动识别需要激活的Windows以及Office的VL版本,无需联网即可全自动检测激活,支持创建自动续期计划,相比于国外的同类工具 ...

  4. 【Java学习】Java迭代器

    迭代器是一种模式,它可以使得对于序列类型的数据结构的遍历行为与被遍历的对象分离,即我们无需关心该序列的底层结构是什么样子的.只要拿到这个对象,使用迭代器就可以遍历这个对象的内部. 1.Iterator ...

  5. java Servlet学习笔记(一)

    访问机制 (https://pan.baidu.com/share/link?shareid=3055126243&uk=3355579678&fid=1073713310362078 ...

  6. lua遍历文件

    看了不少人的,主要还是错误处理有点问题,不多说了 贴代码: require "lfs" function getpathes(rootpath, pathes) pathes = ...

  7. ASP.NET MVC 之各种jQuery提交模式实例

    1.$.ajax提交 var _data = { "dictItemID": dictItemID, "itemType": itemType, "i ...

  8. linux linux系统的安装及使用

    linux  linux系统的安装及使用 一.linux系统中安装vm-tools工具: 步骤: 1.在vmware workstation软件中:虚拟机-安装vmware-tools-状态栏会提示- ...

  9. Python中的map_reduce

      原教程地址: map/reduce-廖雪峰   将数值型字符串转换成数值,解释map, reduce的使用: #!/usr/bin/env python #-*- coding:utf-8 -*- ...

  10. json解析(自动判断是jsonArray和jsonObject)

    因为想做一个接口自动化框架,已经实现了接口的访问和连接及获取接口返回的json数据,但json数据的解析是个麻烦的事情,所以写一个简单的版本记录一下.后续会进行优化,实现方法分离以及自动识别循环解析返 ...