这篇文章只是基于OpenCV使用SSD算法执行目标检测;不涉及到SSD的理论原理、不涉及训练过程;也就是说仅仅使用训练好的模型文件基于OpenCV做测试;包括图片和视频;

  只用作笔记,原教程地址:Object detection with deep learning and OpenCV


Single Shot Detectors for Object Detection

  当提到基于深度学习的目标检测算法,大家都多多少少的听说过这三种算法:

 当然了,现在已经是19年了,上面三种算法也已经更新换代了;那之所以还列举出来,想要表达的是这三类算法是相当good,...(完了,装不下去了....)

R-CNN系列检测算法,精确度高,速度慢;

YOLO系列检测算法,速度快,精确度有些欠缺;

SSD取了两者的优点吧。。。。

Deep learning-based object detection with OpenCV

#!/usr/bin/env python
#-*- coding:utf-8 -*-
# @Time : 19-4-24 下午3:52
# @Author : chen """
利用MobileNet SSD + OpenCV中的dnn执行目标检测 python deep_learning_object_detection_cz.py --image images/face_1.jpg \
--prototxt MobileNetSSD_deploy.prototxt.txt \
--model MobileNetSSD_deploy.caffemodel
"""
# 依赖包
import numpy as np
import argparse
import cv2
import time
import pdb # 解析命令行参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to input image")
ap.add_argument("-p", "--prototxt", required=True, help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True, help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2, help="minimum probability to filter weak detections")
args = vars(ap.parse_args()) # 初始化类标签,然后为每一个类别设置一个颜色值
# 该颜色值是为了在图像中画出矩形框的时候使用
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) # 加载训练好的Caffe模型
# OpenCV的dnn方法中,可以加载由Caffe,TensorFLow,Darknet,Torch训练得到的模型文件的方法
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"]) # 加载测试图片,并转换成blob(OpenCV需要这样做)
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
# cv2.dnn.blobFromImage返回一个四维的blob
# 可以对image执行缩放,剪切,交换RB通道,减均值操作
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5) # 输入到网络中,执行Inference
print("[INFO] computing object detections...")
net.setInput(blob)
start = time.time()
detections = net.forward()
end = time.time()
print("[INFO] SSD took {:6} seconds.".format(end - start))
# pdb.set_trace() for i in range(detections.shape[2]):
# 类别概率
confidence = detections[0, 0, i, 2] # 过滤掉confidence小于人为设定的阈值的detection
if confidence > args["confidence"]:
idx = int(detections[0, 0, i, 1]) # 类别索引
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int") # SSD的输出直接就是框的左上角和右下角的点的坐标位置 # 在图片展示检测的object
label = "{}: {:.2f}%".format(CLASSES[idx], confidence*100)
print("[INFO] {}".format(label))
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
y = startY -15 if startY - 15 > 15 else startY + 15
cv2.putText(image, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) # 显示
cv2.imshow("Object Detection", image)
cv2.waitKey(0)
cv2.imwrite("lab_2_ssd.jpg", image)

 这样有没有用?????用处不大

  还是需要看论文的。。。。。

Object detection with deep learning and OpenCV的更多相关文章

  1. 论文阅读之: Hierarchical Object Detection with Deep Reinforcement Learning

    Hierarchical Object Detection with Deep Reinforcement Learning NIPS 2016 WorkShop  Paper : https://a ...

  2. paper 159:文章解读:From Facial Parts Responses to Face Detection: A Deep Learning Approach--2015ICCV

    文章链接:https://arxiv.org/pdf/1509.06451.pdf 1.关于人脸检测的一些小小总结(Face Detection by Literature) (1)Multi-vie ...

  3. 论文笔记之:From Facial Parts Responses to Face Detection: A Deep Learning Approach

    From Facial Parts Responses to Face Detection: A Deep Learning Approach ICCV 2015 从以上两张图就可以感受到本文所提方法 ...

  4. 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)

    Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...

  5. 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 0.Learning Goals

    Learning Goals: Understand the challenges of Object Localization, Object Detection and Landmark Find ...

  6. Scalable Object Detection using Deep Neural Networks译文

    原文:https://arxiv.org/abs/1312.2249

  7. 论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey

    目录 写在前面 目标检测任务与挑战 目标检测方法汇总 基础子问题 基于DCNN的特征表示 主干网络(network backbone) Methods For Improving Object Rep ...

  8. YOLO object detection with OpenCV

    Click here to download the source code to this post. In this tutorial, you’ll learn how to use the Y ...

  9. deep learning 的综述

    从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...

随机推荐

  1. 使用Azure Site Recovery把VM批量搬迁到Azure

    Azure Site Recovery可以提供如下服务: Site Recovery 服务:Site Recovery 可以在站点出现故障时,让应用在其他站点继续可用,从而确保业务连续性. Site ...

  2. 蓝桥杯 Beaver's Calculator

    问题描述 从万能词典来的聪明的海狸已经使我们惊讶了一次.他开发了一种新的计算器,他将此命名为"Beaver's Calculator 1.0".它非常特别,并且被计划使用在各种各样 ...

  3. Java基础--压缩和解压缩gz包

    gz是Linux和OSX中常见的压缩文件格式,下面是用java压缩和解压缩gz包的例子 public class GZIPcompress { public static void FileCompr ...

  4. distinct可以用in代替(小技巧)

    distinct可以用in代替,in的好处是直接能获取所有数据,而distunct只能获取distinct的字段,不过效率肯定高一些.

  5. python web框架 Django进阶

    django 进阶 基础中,一些操作都是手动创建连接的非主流操作,这样显得太low,当然也是为了熟悉这个框架! 实际中,django自带连接数据库和创建app的机制,同时还有更完善的路由系统机制.既然 ...

  6. Python函数(一)-return返回值

    定义一个函数可以在最后加上return返回值,方便查看函数是否运行完成和返回函数的值 # -*- coding:utf-8 -*- __author__ = "MuT6 Sch01aR&qu ...

  7. VS2010 rdlc报表无法显示“数据源”选项

  8. 图片缓存核心类LruCache

    该类类似一个缓存池,具体可参考 http://www.fengfly.com/plus/view-214546-2.html

  9. php中COM函数的使用

    php里的com类可以操作window系统上的东西 例如:可以在本地打开一个word文档,然后写入东西,只用于window系统 需要加载php_com_dotnet.dll模块   $word = n ...

  10. 3-3 zookeeper的作用体现

    zookeeper比较重要的一个模式:选举模式,这也是高可用的一个体现.公司的董事长.副董事长.董事会常理员以及老总和副总,他们并不会乘坐同一班飞机,而是会分为两班或者三班飞机一起去,也就是我们所谓的 ...