MapReduce 简介
2. MapReduce 简介
MapReduce 实际上是分为两个过程
- map 过程 : 数据的读取
- reduce 过程 : 数据的计算
并行计算是一个非常复杂的过程, mapreduce是一个并行框架。
在Hadoop中,每个MapReduce任务都被初始化为一个Job,每个Job又可以分为两种阶段:map阶段和reduce阶段。这两个阶段分别用两个函数表示,即map函数和reduce函数
我们可以看下典型的官方列子
开发
用idea 开发开发
pom.xml 添加依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.2.1</version>
</dependency>
</dependencies>
写代码:
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;
import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
/**
Created by diwu.sld on 2016/4/13.
*/
public class WordCount{public static class CountMap extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();public void map(LongWritable longWritable,
Text text,
OutputCollector<Text, IntWritable> outputCollector,
Reporter reporter) throws IOException {
String line = text.toString();
StringTokenizer tokenizer = new StringTokenizer(line); while(tokenizer.hasMoreTokens()){
word.set(tokenizer.nextToken());
outputCollector.collect(word, one);
}
}
}
public static class CountReduce extends MapReduceBase implements
Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(CountMap.class);
conf.setCombinerClass(CountReduce.class);
conf.setReducerClass(CountReduce.class); conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf);
}
}
然后打好包 HadoopDemo:
1. Project Sturcture->Artifacts->+
2. Build Artifacts
放到 hadoop 目录下运行
运行
- bin/hadoop fs -mkdir -p input
- bin/hadoop fs -copyFromLocal README.txt input
- bin/hadoop jar demos/HadoopDemo.jar WorldCount input output
- bin/hadoop fs -cat output/* 或者bin/hadoop fs -ls output
- bin/hadoop fs -cat output/part-r-00000
总结
如果有N个文件,和对这个N个文件的计算,我们可以用并行来提高运行效率。但是文件有大有小, 计算量有多又少, 如何进行并行和分配任务是一个非常繁琐的事情。 所以有了Hadoop这个并行框架来解决我们的问题。
Hadoop 主要分为两大块: 分布式文件存储和分布式计算。
在分布式文件存储中,他会把文件分割为想多相同的小块。
MapReduce 简介的更多相关文章
- MapReduce简介
MapReduce简介 参考自[http://www.cnblogs.com/swanspouse/p/5130136.html] MapReduce定义: MapReduce是一种可用于数据处理的编 ...
- 【MapReduce】一、MapReduce简介与实例
(一)MapReduce介绍 1.MapReduce简介 MapReduce是Hadoop生态系统的一个重要组成部分,与分布式文件系统HDFS.分布式数据库HBase一起合称为传统Hadoop的三 ...
- 大数据技术 —— MapReduce 简介
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在 ...
- MapReduce简介以及详细配置
1.MapReduce(一个分布式运算框架)将数据分为数据块,发送到不同的节点,并行方式处理. 2.NodeManager和DataNode在一个节点上,程序与数据在一个节点. 3.内容分为两个部分 ...
- MapReduce的核心资料索引 [转]
转自http://prinx.blog.163.com/blog/static/190115275201211128513868/和http://www.cnblogs.com/jie46583173 ...
- MapReduce原理与设计思想
简单解释 MapReduce 算法 一个有趣的例子 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家 ...
- 化繁为简(三)—探索Mapreduce简要原理与实践
目录-探索mapreduce 1.Mapreduce的模型简介与特性?Yarn的作用? 2.mapreduce的工作原理是怎样的? 3.配置Yarn与Mapreduce.演示Mapreduce例子程序 ...
- Hadoop(十二)MapReduce概述
前言 前面以前把关于HDFS集群的所有知识给讲解完了,接下来给大家分享的是MapReduce这个Hadoop的并行计算框架. 一.背景 1)爆炸性增长的Web规模数据量 2)超大的计算量/计算复杂度 ...
- 典型分布式系统分析之MapReduce
在 <分布式学习最佳实践:从分布式系统的特征开始(附思维导图)>一文中,提到学习分布式系统的一个好方法是思考分布式系统要解决的问题,有哪些衡量标准,为了解决这些问题:提出了哪些理论.协议. ...
随机推荐
- 进制转换( C++字符数组 )
注: 较为简便的方法是用 整型(int)或浮点型(long.double 注意:该类型不一定能够准确存储数据) 来存放待转换的数值,可直接取余得到每一位数值 较为稳定的方法是用 字符数组储存待转换的数 ...
- wifi 破解
基础的知识: ESSID :无线网络的名字 BSSID :是AP的mac地址 CH: 工作信道 AP :无线访问接入点 WEP WPA/WPA2 STATION :客户机mac DHCP ...
- PHP AJAX JSONP实现跨域请求使用实例
在之前我写过“php返回json数据简单实例”,“php返回json数据中文显示的问题”和“在PHP语言中使用JSON和将json还原成数组”.有兴趣的童鞋可以看看 今天我写的是PHP AJAX JS ...
- Xamarin.Android Binding
0.要绑定的jar库,需要保证编译jar使用的jdk版本,与绑定时xamarin使用的jdk版本一致. 查看编译jar的jdk版本的方法:jar解压后,a.看MANIFEST.MF b. javap ...
- Apache服务器性能监控
Apache服务器性能监控 1.使用自带mod_status模块监控 1)加载mod_status.so 模块 在httpd.conf中打开LoadModule status_module modul ...
- 【java基础学习】反射
1. 什么是反射 Class.Method.Field.Constructor,它们是反射对象.它们是类.方法.成员变量.构造器,在内存中的形式. 也就是万物皆对象!类是类型.方法是类型.成员变量是类 ...
- mysql slow query---pt-query-digest----db structure consistency,monitor table records before and after transaction.
将数据库脚本纳入版本管理是很必要的,尤其对于需要在客户那里部署升级的系统. 对于Python Django等框架,由于数据库是通过Model生成的,因此框架本身包括数据库升级工具,并通过代码版本间接管 ...
- xcode中使用正则表达式来搜索替换代码
有这样的需求: 类似于 GLOBAL_STR(@"请继续添加"); 这样的代码,需要批量修改为: GLOBAL_STR(@"请继续添加", nil); 这里使用 ...
- 简易版C语言程序设计语法
源程序 → 外部声明 | 子程序(外部声明) 外部声明 → 函数定义| 函数声明 函数定义 → 类型标识符(复合句) 标识符类型 → 无类型 | 字符型 | 整型 | 浮点型 整型→ 长整型 | ...
- JMeter学习-030-JMeter性能测试常用之事务控制器实例
通常进行性能测试时,我们一般仅考虑主要的数据返回,不考虑页面渲染所需要的数据(例如:css.js.图片等).但当我们需要衡量打开一个页面(页面渲染完成)的性能时,我们就需要考虑完成页面渲染所需要的图片 ...