2. MapReduce 简介

MapReduce 实际上是分为两个过程

  1. map 过程 : 数据的读取
  2. reduce 过程 : 数据的计算

并行计算是一个非常复杂的过程, mapreduce是一个并行框架。

在Hadoop中,每个MapReduce任务都被初始化为一个Job,每个Job又可以分为两种阶段:map阶段和reduce阶段。这两个阶段分别用两个函数表示,即map函数和reduce函数

我们可以看下典型的官方列子

开发

用idea 开发开发

pom.xml 添加依赖

<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.2.1</version>
</dependency>
</dependencies>

写代码:

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.*;

import java.io.IOException;

import java.util.Iterator;

import java.util.StringTokenizer;

/**

  • Created by diwu.sld on 2016/4/13.

    */

    public class WordCount{

    public static class CountMap extends MapReduceBase

    implements Mapper<LongWritable, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);

    private Text word = new Text();

     public void map(LongWritable longWritable,
    Text text,
    OutputCollector<Text, IntWritable> outputCollector,
    Reporter reporter) throws IOException {
    String line = text.toString();
    StringTokenizer tokenizer = new StringTokenizer(line); while(tokenizer.hasMoreTokens()){
    word.set(tokenizer.nextToken());
    outputCollector.collect(word, one);
    }
    }

    }

    public static class CountReduce extends MapReduceBase implements

    Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterator values,

    OutputCollector<Text, IntWritable> output, Reporter reporter)

    throws IOException {

    int sum = 0;

    while (values.hasNext()) {

    sum += values.next().get();

    }

    output.collect(key, new IntWritable(sum));

    }

    }

    public static void main(String[] args) throws Exception {

    JobConf conf = new JobConf(WordCount.class);

    conf.setJobName("wordcount");

     conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(CountMap.class);
    conf.setCombinerClass(CountReduce.class);
    conf.setReducerClass(CountReduce.class); conf.setInputFormat(TextInputFormat.class);
    conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0]));
    FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf);

    }

    }

然后打好包 HadoopDemo:

1. Project Sturcture->Artifacts->+
2. Build Artifacts

放到 hadoop 目录下运行

运行

  1. bin/hadoop fs -mkdir -p input
  2. bin/hadoop fs -copyFromLocal README.txt input
  3. bin/hadoop jar demos/HadoopDemo.jar WorldCount input output
  4. bin/hadoop fs -cat output/* 或者bin/hadoop fs -ls output
  5. bin/hadoop fs -cat output/part-r-00000

总结

如果有N个文件,和对这个N个文件的计算,我们可以用并行来提高运行效率。但是文件有大有小, 计算量有多又少, 如何进行并行和分配任务是一个非常繁琐的事情。 所以有了Hadoop这个并行框架来解决我们的问题。

Hadoop 主要分为两大块: 分布式文件存储和分布式计算。

在分布式文件存储中,他会把文件分割为想多相同的小块。

MapReduce 简介的更多相关文章

  1. MapReduce简介

    MapReduce简介 参考自[http://www.cnblogs.com/swanspouse/p/5130136.html] MapReduce定义: MapReduce是一种可用于数据处理的编 ...

  2. 【MapReduce】一、MapReduce简介与实例

    (一)MapReduce介绍 1.MapReduce简介   MapReduce是Hadoop生态系统的一个重要组成部分,与分布式文件系统HDFS.分布式数据库HBase一起合称为传统Hadoop的三 ...

  3. 大数据技术 —— MapReduce 简介

    本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在 ...

  4. MapReduce简介以及详细配置

    1.MapReduce(一个分布式运算框架)将数据分为数据块,发送到不同的节点,并行方式处理. 2.NodeManager和DataNode在一个节点上,程序与数据在一个节点. 3.内容分为两个部分 ...

  5. MapReduce的核心资料索引 [转]

    转自http://prinx.blog.163.com/blog/static/190115275201211128513868/和http://www.cnblogs.com/jie46583173 ...

  6. MapReduce原理与设计思想

    简单解释 MapReduce 算法 一个有趣的例子 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家 ...

  7. 化繁为简(三)—探索Mapreduce简要原理与实践

    目录-探索mapreduce 1.Mapreduce的模型简介与特性?Yarn的作用? 2.mapreduce的工作原理是怎样的? 3.配置Yarn与Mapreduce.演示Mapreduce例子程序 ...

  8. Hadoop(十二)MapReduce概述

    前言 前面以前把关于HDFS集群的所有知识给讲解完了,接下来给大家分享的是MapReduce这个Hadoop的并行计算框架. 一.背景 1)爆炸性增长的Web规模数据量 2)超大的计算量/计算复杂度 ...

  9. 典型分布式系统分析之MapReduce

    在 <分布式学习最佳实践:从分布式系统的特征开始(附思维导图)>一文中,提到学习分布式系统的一个好方法是思考分布式系统要解决的问题,有哪些衡量标准,为了解决这些问题:提出了哪些理论.协议. ...

随机推荐

  1. 进制转换( C++字符数组 )

    注: 较为简便的方法是用 整型(int)或浮点型(long.double 注意:该类型不一定能够准确存储数据) 来存放待转换的数值,可直接取余得到每一位数值 较为稳定的方法是用 字符数组储存待转换的数 ...

  2. wifi 破解

      基础的知识: ESSID :无线网络的名字 BSSID  :是AP的mac地址 CH: 工作信道 AP   :无线访问接入点 WEP WPA/WPA2 STATION   :客户机mac DHCP ...

  3. PHP AJAX JSONP实现跨域请求使用实例

    在之前我写过“php返回json数据简单实例”,“php返回json数据中文显示的问题”和“在PHP语言中使用JSON和将json还原成数组”.有兴趣的童鞋可以看看 今天我写的是PHP AJAX JS ...

  4. Xamarin.Android Binding

    0.要绑定的jar库,需要保证编译jar使用的jdk版本,与绑定时xamarin使用的jdk版本一致. 查看编译jar的jdk版本的方法:jar解压后,a.看MANIFEST.MF  b. javap ...

  5. Apache服务器性能监控

    Apache服务器性能监控 1.使用自带mod_status模块监控 1)加载mod_status.so 模块 在httpd.conf中打开LoadModule status_module modul ...

  6. 【java基础学习】反射

    1. 什么是反射 Class.Method.Field.Constructor,它们是反射对象.它们是类.方法.成员变量.构造器,在内存中的形式. 也就是万物皆对象!类是类型.方法是类型.成员变量是类 ...

  7. mysql slow query---pt-query-digest----db structure consistency,monitor table records before and after transaction.

    将数据库脚本纳入版本管理是很必要的,尤其对于需要在客户那里部署升级的系统. 对于Python Django等框架,由于数据库是通过Model生成的,因此框架本身包括数据库升级工具,并通过代码版本间接管 ...

  8. xcode中使用正则表达式来搜索替换代码

    有这样的需求: 类似于 GLOBAL_STR(@"请继续添加"); 这样的代码,需要批量修改为: GLOBAL_STR(@"请继续添加", nil); 这里使用 ...

  9. 简易版C语言程序设计语法

    源程序 → 外部声明 | 子程序(外部声明) 外部声明   → 函数定义| 函数声明 函数定义 → 类型标识符(复合句) 标识符类型 → 无类型 | 字符型 | 整型 | 浮点型 整型→ 长整型 | ...

  10. JMeter学习-030-JMeter性能测试常用之事务控制器实例

    通常进行性能测试时,我们一般仅考虑主要的数据返回,不考虑页面渲染所需要的数据(例如:css.js.图片等).但当我们需要衡量打开一个页面(页面渲染完成)的性能时,我们就需要考虑完成页面渲染所需要的图片 ...