Hadoop官方文档翻译——YARN Architecture(2.7.3)
The fundamental idea of YARN is to split up the functionalities of resource management and job scheduling/monitoring into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job or a DAG of jobs.
The ResourceManager and the NodeManager form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system. The NodeManager is the per-machine framework agent who is responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager/Scheduler.
The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.
YARN的基本构想是将资源管理器和作业调度器/监控器分开成两个单独的进程。这个想法是为了拥有一个全局的资源管理器(RM)和每一个应用都有一个应用控制器。应用可以是一个单独的作业也可以是一组作业。
ResourceManager和NodeManager构成数据计算框架。RM是最终的权威仲裁系统中的所有应用的资源分配。NodeManager是框架在每台机器中负责containers的代理,监控它们的资源使用(内存、CPU、磁盘和网络)和将其汇报给ResourceManager/调度器。监控它们的资源使用(内存、CPU、磁盘和网络)和将其汇报给ResourceManager/调度器。
每个应用程序的ApplicationMaster实际上是框架指定的库负责从RM谈判获取资源并和MM一起工作来执行和监控任务。

The ResourceManager has two main components: Scheduler and ApplicationsManager.
The Scheduler is responsible for allocating resources to the various running applications subject to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that it performs no monitoring or tracking of status for the application. Also, it offers no guarantees about restarting failed tasks either due to application failure or hardware failures. The Scheduler performs its scheduling function based the resource requirements of the applications; it does so based on the abstract notion of a resource Container which incorporates elements such as memory, cpu, disk, network etc.
The Scheduler has a pluggable policy which is responsible for partitioning the cluster resources among the various queues, applications etc. The current schedulers such as the CapacityScheduler and the FairScheduler would be some examples of plug-ins.
The ApplicationsManager is responsible for accepting job-submissions, negotiating the first container for executing the application specific ApplicationMaster and provides the service for restarting the ApplicationMaster container on failure. The per-application ApplicationMaster has the responsibility of negotiating appropriate resource containers from the Scheduler, tracking their status and monitoring for progress.
MapReduce in hadoop-2.x maintains API compatibility with previous stable release (hadoop-1.x). This means that all MapReduce jobs should still run unchanged on top of YARN with just a recompile.
ResourceManager有两个主要的组成部分:调度器和应用管理器。
调度器负责给各个正在运行的拥有相似的约束如容量,队列等的应用分配资源。调度器是一个纯粹的调度器而不负责监控或者跟踪应用的状态。他也不负责恢复由于应用失效或者硬件失效而失败的任务。调度器根据应用的资源需求来执行它的调度。而不是根据一个抽象资源“容器”包含的元素例如内存、CPU、磁盘和网络等
调度器是一个可插拔的组件负责将资源分配给各种各样的队列、应用等。目前的容量调度器和公平调度器将成为一些插件的例子。
应用管理器负责接收作业的提交、选择第一个容器用来运行应用指定的应用控制器和提供当ApplicationMaster容器失效时的重启。每个应用的ApplicationMaster负责从调度器那里谈判获取合适的资源容器,跟踪他们的状态和监控过程。
hadoop-2.x中的MapReduce兼容前面稳定的版本(hadoop-1.x)。这就意味着所有的MapReduce作业只需要再编译一次无需做任何改变就可以运行在YARN上。
*由于译者本身能力有限,所以译文中肯定会出现表述不正确的地方,请大家多多包涵,也希望大家能够指出文中翻译得不对或者不准确的地方,共同探讨进步,谢谢。
Hadoop官方文档翻译——YARN Architecture(2.7.3)的更多相关文章
- Hadoop官方文档翻译—— YARN ResourceManager High Availability 2.7.3
ResourceManager High Availability (RM高可用) Introduction(简介) Architecture(架构) RM Failover(RM 故障切换) Rec ...
- Hadoop官方文档翻译——HDFS Architecture 2.7.3
HDFS Architecture HDFS Architecture(HDFS 架构) Introduction(简介) Assumptions and Goals(假设和目标) Hardware ...
- 【转载】Hadoop官方文档翻译——HDFS Architecture 2.7.3
HDFS Architecture HDFS Architecture(HDFS 架构) Introduction(简介) Assumptions and Goals(假设和目标) Hardware ...
- Hadoop官方文档翻译——MapReduce Tutorial
MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...
- Spark官方文档翻译(一)~Overview
Spark官方文档翻译,有问题请及时指正,谢谢. Overview页 http://spark.apache.org/docs/latest/index.html Spark概述 Apache Spa ...
- Flume官方文档翻译——Flume 1.7.0 User Guide (unreleased version)(二)
Flume官方文档翻译--Flume 1.7.0 User Guide (unreleased version)(一) Logging raw data(记录原始数据) Logging the raw ...
- Hadoop学习之YARN框架
转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/,非常感谢分享! 对于业界的大数据存储及分布式处理系统来说,H ...
- Hadoop学习笔记—Yarn
目录 一些基本知识 ResourceManager 的恢复 Resource Manager的HA YARN Node Labels YARN Node Attributes Web Applicat ...
- Flume官方文档翻译——Flume 1.7.0 User Guide (unreleased version)中一些知识点
Flume官方文档翻译--Flume 1.7.0 User Guide (unreleased version)(一) Flume官方文档翻译--Flume 1.7.0 User Guide (unr ...
随机推荐
- Centos普通用户提权至ROOT
1.利用/bin/ping的漏洞普通用户提权.(rws中的s) [root@localhost ~]# ls -l /bin/ping -rwsr-xr-x. root root 9月 /bin/pi ...
- 关于echart横轴颜色 纵轴颜色 以及文本颜色的修改
xAxis : [ { type : 'category', boundaryGap : false, data : ['周一','周二','周三','周四','周五','周六','周日'], axi ...
- 如何快速清空项目中的session值
/清空session //第一种:按照指定的名称清空session //request.getSession().removeAttribute("globle_user"); / ...
- javascript position兼容性随笔
一.Javascript源码 if (!window.jasen.core.Position) { window.jasen.core.Position = {}; } function Size(w ...
- Scala.js v0.1 发布,在浏览器直接运行 Scala
今天我们发布了 Scala.js 的首个版本,这个项目是在今年六月份的时候宣布的. 第一个版本支持的特性: 支持所有 Scala 特性,包括宏,不过有一些 语义上的区别 可非常好的跟 JavaScri ...
- apache httpclient CacheStorage的一个自定义实现
import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io ...
- [教程]怎么用百度云观看和下载"磁力链接"无需下载直接观看.
1, 打开网址 http://okbt.net/ 输入你想要看的电影名字, 点搜索,鼠标右键点击拷贝磁力链接.或者 电脑装了迅雷的话.可以直接点击.用迅雷下载. 磁力链接都是这种格式的.例: mag ...
- Nim教程【十四】
网友@沉没捕鱼,赞助了一台服务器 这个系列的教程写完之后,我们就要开始着手搭建Nim的社区了~ 异常 Nim中的异常类型是对象类型 根据惯例,Nim中的异常类型的命名都应该以Error后缀结尾 在sy ...
- drag & resize元素的jQuery实现
有时项目中会遇到需要拖动元素.拖拽调整元素大小的需求.大部分时候都不想自己写一遍,因为已经有很多现成的例子了.例如jqueryui提供的drag和resize.但是仅仅是为了这么小一个功能就引入一个库 ...
- redis系列-redis的使用场景
redis越来越受大家欢迎,提升下速度,做下缓存,完成KPI之利器呀.翻译一篇文章<<How to take advantage of Redis just adding it to yo ...