(zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers
A list of recent papers regarding deep reinforcement learning.
The papers are organized based on manually-defined bookmarks.
They are sorted by time to see the recent papers first.
Any suggestions and pull requests are welcome.
Bookmarks
- All Papers
- Value
- Policy
- Discrete Control
- Continuous Control
- Text Domain
- Visual Domain
- Robotics
- Games
- Monte-Carlo Tree Search
- Inverse Reinforcement Learning
- Improving Exploration
- Multi-Task and Transfer Learning
- Multi-Agent
- Hierarchical Learning
All Papers
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Value Iteration Networks, A. Tamar et al., arXiv, 2016.
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
- MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
- Learning Simple Algorithms from Examples, W. Zaremba et al., arXiv, 2015.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Recurrent Reinforcement Learning: A Hybrid Approach, X. Li et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- Learning Deep Neural Network Policies with Continuous Memory States, M. Zhang et al., arXiv, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, H. Mei et al., arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- Maximum Entropy Deep Inverse Reinforcement Learning, M. Wulfmeier et al., arXiv, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- DeepMPC: Learning Deep Latent Features for Model Predictive Control, I. Lenz, et al., RSS, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
- Deterministic Policy Gradient Algorithms, D. Silver et al., ICML, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Value
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Value Iteration Networks, A. Tamar et al., arXiv, 2016.
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
- Learning Simple Algorithms from Examples, W. Zaremba et al., arXiv, 2015.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Recurrent Reinforcement Learning: A Hybrid Approach, X. Li et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Policy
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- Deterministic Policy Gradient Algorithms, D. Silver et al., ICML, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
Discrete Control
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Value Iteration Networks, A. Tamar et al., arXiv, 2016.
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
- Learning Simple Algorithms from Examples, W. Zaremba et al., arXiv, 2015.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Recurrent Reinforcement Learning: A Hybrid Approach, X. Li et al., arXiv, 2015.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, H. Mei et al., arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Continuous Control
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- Learning Deep Neural Network Policies with Continuous Memory States, M. Zhang et al., arXiv, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- DeepMPC: Learning Deep Latent Features for Model Predictive Control, I. Lenz, et al., RSS, 2015.
- Deterministic Policy Gradient Algorithms, D. Silver et al., ICML, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
Text Domain
- Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
- MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, H. Mei et al., arXiv, 2015.
Visual Domain
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Value Iteration Networks, A. Tamar et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Robotics
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- Learning Deep Neural Network Policies with Continuous Memory States, M. Zhang et al., arXiv, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- DeepMPC: Learning Deep Latent Features for Model Predictive Control, I. Lenz, et al., RSS, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
Games
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Monte-Carlo Tree Search
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
Inverse Reinforcement Learning
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Maximum Entropy Deep Inverse Reinforcement Learning, M. Wulfmeier et al., arXiv, 2015.
Multi-Task and Transfer Learning
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
Improving Exploration
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
Multi-Agent
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
Hierarchical Learning
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
(zhuan) Deep Reinforcement Learning Papers的更多相关文章
- (转) Deep Reinforcement Learning: Playing a Racing Game
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...
- (转) Deep Reinforcement Learning: Pong from Pixels
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- 【资料总结】| Deep Reinforcement Learning 深度强化学习
在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...
- Deep Reinforcement Learning
Reinforcement-Learning-Introduction-Adaptive-Computation http://incompleteideas.net/book/bookdraft20 ...
- Deep Reinforcement Learning with Iterative Shift for Visual Tracking
Deep Reinforcement Learning with Iterative Shift for Visual Tracking 2019-07-30 14:55:31 Paper: http ...
- 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...
- (转) Playing FPS games with deep reinforcement learning
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...
- Learning Roadmap of Deep Reinforcement Learning
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...
随机推荐
- ACM_1001_Exponentiation 详解
参考:http://blog.csdn.net/rually/article/details/8585268 #include<iostream> using namespace std; ...
- NSOperation的几种使用方式
1.NSInvocationOperation 创建NSInvocationOperation对象 - (id)initWithTarget:(id)target selector:(SEL)sel ...
- 使用FlaycoBanner实现图片轮播效果(加载网络图片)
FlaycoBanner是一个开源图片轮播框架,支持android2.2及以上: git地址:https://github.com/H07000223/FlycoBanner_Master 在andr ...
- BackTrack5-r3配置网络信息
设置静态IP在BT终端输入:ifconfig -a 按回车// 查看所有网卡在BT终端输入:vi /etc/network/interfaces ...
- OD18
介绍一个工具exescope 可以修改一些exe程序里的东西 通过这个工具 我们找到了我们要除掉的NAG窗口的具体位置 那我们可以通过OD进行跟踪 来到程序头下段 ...
- POM
代码的第一行是xml头,指定了该xml文档的版本和编码方式 project是所有pom.xml的根元素,还声明了一些POM相关的命名空间及xsd元素. modelVersion指定了当前POM模型的版 ...
- HDU 5398 (动态树)
Problem GCD Tree 题目大意 n个点的无向完全图,标号1~n,每条边u-->v 的权值为gcd(u,v),求其最大生成树,输出最大边权和. n<=10^5,有多个询问. 解题 ...
- Echarts 动态折线图
<script src="http://echarts.baidu.com/build/dist/echarts-all.js"></script>< ...
- iOS给UIimage添加圆角的两种方式
众所周知,给图片添加圆角有CALayer的cornerRadius, 比如: 最直接的方法: imgView.layer.cornerRadius1=110; imgView.clipsToBou ...
- win32自绘按钮,使用GDI+(二)
一.解决上一篇的两个问题. 1.按钮背景透明 方法是,在绘制按钮之前,向按钮的父窗口发生WM_CTLCOLORBTN消息.该消息返回一个画刷句柄,系统使用该画刷句柄画出按钮的背景.所以我们在处理这个消 ...