增强拉格朗日乘子法的作用是用来解决等式约束下的优化问题,

假定需要求解的问题如下:

    minimize   f(X)

    s.t.:     h(X)=0

其中,f:Rn->R; h:Rn->Rm

朴素拉格朗日乘子法的解决方案是:

    L(X,λ)=f(X)+μh(X);  μ:Rm

    此时,求解L对X和μ的偏导同时为零就可以得到最优解了。

增强拉格朗日乘子法的解决方案是:

    Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2

    每次求出一个xi,然后按照梯度更新参数μ,c每次迭代逐渐增大(使用ALM方法好像还有一些假设条件)

    整个流程只需要几步就可以完成了,一直迭代就可得到最优解了。

    

参考文献:

  [1]Multiplier and Gradient Methods,1969

  [2]constrained optimization and lagrange multiplier methods(page 104),1982

增强拉格朗日乘子法(Augmented Lagrange Method)的更多相关文章

  1. 【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 ...

  2. 深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    [整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有 ...

  3. 装载:深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  4. Machine Learning系列--深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  5. 【机器学习】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  6. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

    参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush ...

  7. 拉格朗日乘子法(Lagrange Multiplier)和KKT条件

    拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其 ...

  8. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  9. 增广拉格朗日乘子法(Augmented Lagrange Method)

    转载自:增广拉格朗日乘子法(Augmented Lagrange Method) 增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题, 假定需要求解的问题如下: minimize f(X) s.t ...

随机推荐

  1. pascal闪电入门系列目录

    第一章  准备工作 第二章  Hello,world! 第三章  输出.输入 第四章  变量常量.基本数据类型 第五章  格式.注释 第六章  运算符.表达式.优先级 第七章  分支结构 第八章  数 ...

  2. php阻止网页被用户频繁刷新

    一般情况下,用户浏览网页的速度都是几秒十几秒甚至更长时间刷新一页,但有时候又会遇到网页被恶意快速刷新,从而导致正常用户浏览速度缓慢,如何来解决这个问题呢?可以使用如下代码来实现每ip页面访问数量限制: ...

  3. Oracle数据库like和not like使用

    查询手机号注册的记录而不是邮箱 查询2开头的记录 select * from beyond_pay_offline where amount like '2%'

  4. 1-13 代理ARP和RARP

    一.代理ARP(Proxy ARP) 因为路由器有阻住广播的作用,如果我们要访问一台远端的主机,那么我们封装的并不是远端的目的MAC地址,而是我们网关的MAC地址. 当我们的网关出现故障,就需要给他重 ...

  5. mongodb morphia关联查询一例

    //...此处省略了import... /** * Created by shenzhigang on 4/15/16. */ public class Main { public static vo ...

  6. ndoutils2.2.0(ndo2db)中文乱码问题解决

    ndoutils插入中文时,产生数据库乱码请用下面两个文件: 适用版本:ndoutils-2.0.0 数据库初始化mysql.sql: 修改ndoutils-2.0.0/src目录中的db.c ndo ...

  7. redis命令String

    $ keys * $ rename oldkey newkey $ renamex oldkey newkey 新key存在抛出异常 $ dbsize $ expire key 时间(秒) $ ttl ...

  8. Python-day-21

    1.请求周期 url> 路由 > 函数或类 > 返回字符串或者模板语言? Form表单提交: 提交 -> url > 函数或类中的方法 - .... HttpRespon ...

  9. 数字信号处理--FFT

    FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域.有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了.这就是很多信号分析采用FFT变换的原因.另外,FFT可以将 ...

  10. 56992 vuser_init.c(12): Error: Socket descriptor not found.

    Loadrunner 运行场景时提示" vuser_init.c(12): Error: Socket descriptor not found.  Hint: the problem mi ...