逻辑回归(Logistic Regression)

假设函数(Hypothesis Function)

\(h_\theta(x)=g(\theta^Tx)=g(z)=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{\theta^Tx}}\)

g函数称为 Sigmoid FunctionLogistic Function, 它可以使得 \(0 \leq h_\theta (x) \leq 1\).

The following image shows us what the sigmoid function looks like:

\(h_\theta(x)\) 用来估计基于输入特征值x,y=1的可能性。 正式的写法为:

\(h_\theta(x)=P(y=1|x;\theta)=1-P(y=0|x;\theta)\)

因为

\(z=0,e^0=1 \implies g(z) = \frac{1}{2}\)

\(z \to \infty,e^{-\infty} \to 0 \implies g(z) = 1\)

\(z \to - \infty,e^{\infty} \to \infty \implies g(z) = 0\)

所以

当 \(h_\theta(x) \geq 0.5\) 或 \(z \geq 0\) 时,y=1

当 \(h_\theta(x) < 0.5\) 或 \(z < 0\) 时,y=0

另外

The input to the sigmoid function g(z) (e.g. \(\theta^T X\)) doesn't need to be linear, and could be a function that describes a circle (e.g. \(z = \theta_0 + \theta_1 x_1^2 +\theta_2 x_2^2\)) or any shape to fit our data.

代价函数(Cost Function)

We cannot use the same cost function that we use for linear regression because the Logistic Function will cause the output to be wavy, causing many local optima. In other words, it will not be a convex function.

Instead, our cost function for logistic regression looks like:

\(J(\theta)=\frac{1}{m} \sum\limits_{i=1}^m Cost(h_\theta(x^{(i)}),y^{(i)})\)

\(\begin{cases} Cost(h_\theta(x),y)=-log(h_\theta(x)) & \quad \text{if y = 1} \\ \\ Cost(h_\theta(x),y)=-log(1-h_\theta(x)) & \quad \text{if y = 0} \end{cases}\)

When y = 1, we get the following plot for \(J(\theta)\) vs \(h_\theta (x)\):

Similarly, when y = 0, we get the following plot for J(θ) vs hθ(x):

If our correct answer 'y' is 1, then the cost function will be 0 if our hypothesis function outputs 1. If our hypothesis approaches 0, then the cost function will approach infinity.

当 \(y=1\) 时,若 \(h_\theta(x)=1\) ,则 \(Cost=0\) ,若 \(h_\theta(x)=0\) ,则 \(Cost \to \infty\);

If our correct answer 'y' is 0, then the cost function will be 0 if our hypothesis function also outputs 0. If our hypothesis approaches 1, then the cost function will approach infinity.

当 \(y=0\) 时,若 \(h_\theta(x)=0\) ,则 \(Cost=0\) ,若 \(h_\theta(x)=1\) ,则 \(Cost \to \infty\)。

Note that writing the cost function in this way guarantees that J(θ) is convex for logistic regression.

这种代价函数的表示方法可以确保逻辑回归的 \(J(\theta)\) 是凸函数,所以可以使用梯度下降求解 \(\theta\)

将 \(Cost \Big(h_\theta(x),y \Big)\) 简化可得(We can compress our cost function's two conditional cases into one case):

\(Cost \Big(h_\theta(x),y \Big)=-y \cdot log \Big(h_\theta(x) \Big) - (1-y) \cdot log \Big(1-h_\theta(x) \Big)\)

最终的代价函数为(We can fully write out our entire cost function as follows):

\(J(\theta)=-\frac{1}{m} \sum\limits_{i=1}^m \Bigg[ y^{(i)} \cdot log \bigg(h_\theta(x^{(i)}) \bigg) + (1-y^{(i)}) \cdot log \bigg(1-h_\theta(x^{(i)}) \bigg) \Bigg]\)

向量化表示为(A vectorized implementation is):

\(\overrightarrow{h}=g(X \overrightarrow{\theta})\)

\(J(\theta)=\frac{1}{m} \cdot \Big( -\overrightarrow{y}^T \cdot log(\overrightarrow{h}) - (1- \overrightarrow{y})^T \cdot log(1- \overrightarrow{h}) \Big)\)

梯度下降(Gradient Descent)

重复,直到收敛(Repeat until convergence):

\(\theta_j := \theta_j - \alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\theta_1,···\theta_n)\), 其中 \(\frac{\partial}{\partial\theta_j}J(\theta_0,\theta_1,···\theta_n)\) 计算方法为对 \(\theta_j\) 求偏导数(partial derivative)

即(We can work out the derivative part using calculus to get):

\(\theta_j := \theta_j - \alpha\frac{1}{m}\sum\limits_{i = 1}^{m}\biggl(h_\theta(x^{(i)}) - y^{(i)}\biggl)\cdot x_j^{(i)}\)

同时更新(simultaneously update)\(\theta_j\), for j = 0, 1 ..., n

另外, \(x_0^{(i)} \equiv 1\)

向量化表示为(A vectorized implementation is):

\(\theta := \theta - \frac{\alpha}{m} X^T \Big( g(X\theta) - \overrightarrow{y} \Big)\)

Advanced Optimization for Gradient Descent

除了梯度下降法外,还有其他方法计算 \(\overrightarrow{\theta}\) :

  • 共轭梯度法(Conjugate gradient)
  • 变长度法(BFGS)
  • 限制尺度法(L-BFGS)

优点是,无需手动选择学习速率 \(\alpha\) , 以及收敛速度更快。缺点是更加的复杂。

Octave 中已经有提供该方法(fminunc),要调用 fminunc 方法来计算 \(\overrightarrow{\theta}\),需先计算 \(J(\theta)\) 和 \(\frac{\alpha}{\alpha \theta_j}J(\theta)\)

可以写一个简单的函数返回这两个值

function [jVal, gradient] = costFunction(theta)
jVal = [...code to compute J(theta)...];
gradient = [...code to compute derivative of J(theta)...];
end

然后使用Octave的“fminunc()”优化算法以及“optimset()”函数来创建一个包含要发送到“fminunc()”的“options“对象。

options = optimset('GradObj', 'on', 'MaxIter', 100);
initialTheta = zeros(2,1); % our initial vector of theta values
[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);

多元分类(Multiclass Classification: One-vs-all)

对于多元分类的情况,即 y = {0,1...n},我们可以把问题分解为 n+1 个二元分类的问题。 +1 是因为索引是从0开始的。

$y \in $ {0,1...n}

\(h_\theta^{(0)}(x)=P(y=0|x;\theta)\)

\(h_\theta^{(1)}(x)=P(y=1|x;\theta)\)

\(...\)

\(h_\theta^{(n)}(x)=P(y=n|x;\theta)\)

\(prediction=\max\limits_i(h_\theta^{(i)}(x))\)

我们基本上是选择一个类,然后把所有其他类都放到第二类中。重复这样做,对每种情况应用二元逻辑回归,然后使用返回最大值的假设作为我们的预测。

The following image shows how one could classify 3 classes:

To summarize:

Train a logistic regression classifier \(h_\theta(x)\) for each class to predict the probability that  y = i .

To make a prediction on a new x, pick the class that maximizes \(h_\theta (x)\)

程序代码

直接查看Logistic Regression.ipynb可点击

获取源码以其他文件,可点击右上角 Fork me on GitHub 自行 Clone。

[C2] 逻辑回归(Logistic Regression)的更多相关文章

  1. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  2. 机器学习(四)--------逻辑回归(Logistic Regression)

    逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连 ...

  3. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  4. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  5. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  6. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  7. ML 逻辑回归 Logistic Regression

    逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...

  8. 逻辑回归(Logistic Regression)详解,公式推导及代码实现

    逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...

  9. 逻辑回归 Logistic Regression

    逻辑回归(Logistic Regression)是广义线性回归的一种.逻辑回归是用来做分类任务的常用算法.分类任务的目标是找一个函数,把观测值匹配到相关的类和标签上.比如一个人有没有病,又因为噪声的 ...

随机推荐

  1. Error response from daemon: Get https://registry-1.docker.io/v2/: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)

    docker pull nginx 遇到这个问题 Error response from daemon: Get https://registry-1.docker.io/v2/: net/http: ...

  2. Codeforces Round #598 (Div. 3) C. Platforms Jumping 贪心或dp

    C. Platforms Jumping There is a river of width n. The left bank of the river is cell 0 and the right ...

  3. jquery延迟加载

    jquery实现图片延时加载,实现原理:不设置img的src地址,把地址存在img的alt中,当img标签出现在可视区域,alt值传给src.为避免看到替换文本alt,把字体的颜色设置为背景的颜色,如 ...

  4. 一起学react (1) 10分钟 让你dva从入门到精通

    前言 如果文章中有错误的地方的话 可以直接加我QQ:469373256 自己针对一些问题做的优化版本 目前刚启动 还不是很成熟 https://github.com/fangkyi03/fastkit ...

  5. Nginx之负载均衡 :两台服务器均衡(填坑)

    第一步,两台服务器都要安装好Nginx和Tomcat,我这边的安装的是Nginx 1.16.1 Tomcat9: 第二步,安装完成之后,选择你要做均衡的那台服务器,,打开其Nginx 配置文件,在se ...

  6. 打印对象(__str__()和__repr__())

    当打印一个类的实例时,返回的字符串是对象的地址信息,如<__main__.Student object at 0x109afb310>,很不好看 可通过在类内定义__str__(),这样打 ...

  7. SQLServer临时库文件太大,迁移tempdb数据库

    问题描述: 最近公司这边tempdb库文件很大,几百GB的节奏 不过安装数据库的时候,tempdb最好不要放在C盘是放在D盘其他数据盘的 如果没有放在其他盘符下面,就需要做迁移了 解决方法: 如果te ...

  8. Java数组拷贝的五种方法

    在Java中有多种方法可以拷贝一个数组,到另外一个数组. 1.循环拷贝 在循环拷贝方法中,只需要利用i,移动指针即可复制所有数组到arrayB中. for(int i=0;i<arrayA.le ...

  9. MySQL基础之Natural Join用法

    Natural join即自然连接,natural join等同于inner join或inner using,其作用是将两个表中具有相同名称的列进行匹配 用https://www.w3resourc ...

  10. MySQL属性SQL_MODE学习笔记

    最近在学习<MySQL技术内幕:SQL编程>并做了笔记,本博客是一篇笔记类型博客,分享出来,方便自己以后复习,也可以帮助其他人 SQL_MODE:MySQL特有的一个属性,用途很广,可以通 ...