分析:

线性求逆元:https://blog.csdn.net/qq_34564984/article/details/52292502

代码:


#include<cstdio>
using namespace std;
const long long mod=1000000007;
long long ni[1000005],cheng[1000005],dao[1000005],d[1000005];
int main()
{
d[0]=1;
d[1]=0;
d[2]=1;
for(long long i=3;i<=1000000;i++)
{
d[i]=((i-1)*(d[i-1]+d[i-2]))%mod;
}//错排递推公式!!!
ni[1]=1;//1的逆元为1
for(long long i=2;i<=1000000;i++)
{
ni[i]=(mod-mod/i)*ni[mod%i]%mod;
}//求出i的逆元(线性求逆元板子
cheng[0]=1;
for(long long i=1;i<=1000000;i++)
{
cheng[i]=(cheng[i-1]*i)%mod;
} //求出i的正常阶乘
dao[0]=1;
for(long long i=1;i<=1000000;i++)
{
dao[i]=(dao[i-1]*ni[i])%mod;
}
long long T;
scanf("%lld",&T);
while(T--)
{
long long n,m;
scanf("%lld%lld",&n,&m);
printf("%lld\n",(cheng[n]%mod*dao[m]%mod*dao[n-m]%mod*d[n-m]%mod)%mod);
}
return 0;
}

P4071 [SDOI2016]排列计数 题解的更多相关文章

  1. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  2. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  3. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  4. P4071 [SDOI2016]排列计数

    题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条 ...

  5. BZOJ4517 & 洛谷4071:[SDOI2016]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4517 https://www.luogu.org/problemnew/show/P4071 求有 ...

  6. Luogu P4071 [SDOI2016]排列计数

    晚上XZTdalao给我推荐了这道数论题.太棒了又可以A一道省选题了 其实这道题也就考一个错排公式+组合数+乘法逆元 我们来一步一步分析 错排公式 通俗的说就是把n个1~n的数排成一个序列A,并使得所 ...

  7. 洛谷 P4071 [SDOI2016]排列计数

    洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_ ...

  8. 数学【洛谷P4071】 [SDOI2016]排列计数

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  9. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

随机推荐

  1. 海康sdk

    package com.hikvision.artemis.sdk.util; import java.util.Collections; import java.util.Iterator; imp ...

  2. RapidJSON 1.0 正式版发布,C++的JSON开发包

    分享 <关于我> 分享  [中文纪录片]互联网时代                 http://pan.baidu.com/s/1qWkJfcS 分享 <HTML开发MacOSAp ...

  3. 给 Qt sqlite 增加加密功能

    整合sqlite代码 开源的sqlite中没有实现加密的功能,所以如果需要加密功能,需要自己实现 sqlite3_keysqlite3_rekey 等相关函数 不过开源的 wxsqlite3中已经实现 ...

  4. 用Go语言异常机制模拟TryCatch异常捕捉1

    有的同学看到Go和TryCatch一起出现,心里可能会说,难道Go语言升级了,加入了try...catch语句.哈哈,其实Go语言从创建之初就没打算加入try...catch语句,因为创建Go的那帮大 ...

  5. ABAP中SPLIT关键字 当分隔符位于字符串首尾时

    使用SPLIT关键字将一个字符串按某个分隔符拆分,如果分隔符穿插在字符串中间(即首尾字符均不是分隔符的情况),我们很容易知道拆分后的结果,但如果分隔符恰好位于字符串首或者末尾呢? 如下面的代码所示,在 ...

  6. SYN591-C型 时间间隔表

       SYN591-C型 时间间隔表 脉冲计数器数显计数器电机转速表使用说明视频链接: http://www.syn029.com/h-pd-250-0_310_44_-1.html 请将此链接复制到 ...

  7. java之jdbc学习——QueryRunner

    jdbc是ORM框架的基础,但将数据库中的表映射到java对象,并进行增删改查,并不是一件简单的事情. 涉及到jdbc.注解和反射的一些基础知识. 以下内容来自网友的分享,并做了一些增减,作为笔记记录 ...

  8. Spring Boot的学习之路(01):缘起

    有人说,Spring Boot的出现,让Java迎来了又一春,它是Java应用开发的颠覆者,彻底改变了Java应用开发的模式. 2017年,SpringBoot闯入我的生活, 也让我迎来了又一春 我开 ...

  9. CTF练习资源大全集

    练习CTF清单/永久CTF清单 以下列出了一些长期运行的CTF实践站点和工具或CTF.谢谢,RSnake用于启动这是基于的原始版本.如果您有任何更正或建议,请随时通过dot com tld在域psif ...

  10. HTML5新增的表单验证功能

    一.HTML5表单的特点: HTML5 表单增加了许多内置的控件和控件属性 XHTML 中需要放在 form 之中的诸如 input/button/select/textarea 等标签元素,在 HT ...