Java生鲜电商平台-缓存架构实战
Java生鲜电商平台-缓存架构实战
说明:在Java生鲜电商中,缓存起到了非常重要的作用,目前整个项目中才用的是redis做分布式缓存.
缓存集群
缓存集群存在的问题
1.热key
缓存集群中的某个key瞬间被数万甚至十万的并发请求打爆。
2.大value
某个key对应的value可能有GB级的大小,导致查询value的时候导致网络相关的故障问题。
缓存集群作用
在缓存里放一些平时不怎么变动的数据,然后用户在查询大量的平时不怎么变动的数据的时候,可以直接从缓存里走了。缓存集群的并发能力是很强的,而且读缓存的性能是很高的。
缓存实践案例
- 假设系统每秒有2万请求,但是其中90%都是读请求,假如每秒1.8万请求都是在读一些不太变化的数据。那此时你把这些数据都放在数据库里,然后每秒发送2万请求到数据库上读写数据,感受一下这样合适?
- 如果要用数据库承载每秒2万请求的话,那很可能就得搞分库分表 + 读写分离。
- 那得分3个主库,承载每秒2000的写入请求,然后每个主库挂3个从库,一共9个从库承载每秒1.8万的读请求。
- 这样的话,就需要一共是12台高配置的数据库服务器,这是很耗费钱的,成本非常高,很不合适。
- 因此,可以把平时不太变化的数据放在缓存集群里,缓存集群可以采用2主2从,主节点用来写入缓存,从节点用来读缓存。
- 以缓存集群的性能,2个从节点完全可以用来承载每秒1.8万的大量读请求,然后3个数据库主库就是承载每秒2000的写请求和少量其他读请求就OK了(数据一致性问题)。
- 这样一来,耗费的机器瞬间变成了4台缓存机器 + 3台数据库机器 = 7台机器,是不是比之前的12台机器减少了很大的资源开销?
- 缓存其实在系统架构里是非常重要的组成部分。很多时候,对于那些很少变化但是大量高并发读的数据,通过缓存集群来抗高并发读,是非常合适的。
热点缓存
- 所谓热点缓存问题就是突然因为莫名的原因,出现大量的用户访问同一条缓存数据。碰巧这些key都存在于一台缓存机器上。
- 假设每秒突然奔过来20万请求到这台机器上,那台被20万请求指向的缓存机器就会过度操劳而宕机的。
- 读请求发现读不到数据,会从数据库里提取原始数据,然后放入剩余的其他缓存机器里去。但是接踵而来的每秒20万请求,会再次压垮其他的缓存机器。
- 以此类推,最终导致缓存集群全盘崩溃,引发系统整体宕机。
基于流式计算技术的缓存热点自动发现
- 其实这里关键的一点,就是对于这种热点缓存,你的系统需要能够在热点缓存突然发生的时候,直接发现他,然后瞬间立马实现毫秒级的自动负载均衡。
- 一般出现缓存热点的时候,每秒并发肯定是很高的,可能每秒都几十万甚至上百万的请求量过来,这都是有可能的。
- 所以,此时完全可以基于大数据领域的流式计算技术来进行实时数据访问次数的统计,比如storm、spark streaming、flink。
- 一旦在实时数据访问次数统计的过程中,比如发现一秒之内,某条数据突然访问次数超过了1000,就直接立马把这条数据判定为是热点数据,可以将这个发现出来的热点数据写入比如zookeeper中(监听事件)。
- 流式计算系统在进行数据访问次数统计的时候,会不会也存在说单台机器被请求每秒几十万次的问题呢?否!!!
- 流式计算技术,尤其是storm这种系统,他可以做到同一条数据的请求过来,先分散在很多机器里进行本地计算,最后再汇总局部计算结果到一台机器进行全局汇总。
- 所以几十万请求可以先分散在比如100台机器上,每台机器统计了这条数据的几千次请求。
- 然后100条局部计算好的结果汇总到一台机器做全局计算即可,所以基于流式计算技术来进行统计是不会有热点问题的。
热点缓存自动加载为JVM本地缓存
- 我们自己的系统可以对zookeeper指定的热点缓存对应的znode进行监听,如果有变化立马就可以感知到了。
- 此时系统层就可以立马把相关的缓存数据从数据库加载出来,然后直接放在自己系统内部的本地缓存里即可。
- 这个本地缓存,用ehcache、hashmap,其实都可以,一切看自己的业务需求。我们这里主要说的就是将缓存集群里的集中式缓存,直接变成每个系统自己本地实现缓存即可,每个系统本地是无法缓存过多数据的。
- 因为一般这种普通系统单实例部署机器可能就一个4核8G的机器,留给本地缓存的空间是很少的,所以用来放这种热点数据的本地缓存是最合适的,刚刚好。
- 假设系统层集群部署了100台机器,此时你100台机器瞬间在本地都会有一份热点缓存的副本。
- 然后接下来对热点缓存的读操作,直接系统本地缓存读出来就给返回了,不用再走缓存集群了。
- 这样的话,变成100台机器每台机器承载数千请求,那么那数千请求就直接从机器本地缓存返回数据了,这是没有问题的。
限流熔断保护
- 在每个系统内部,还应该专门加一个对热点数据访问的限流熔断保护措施。
- 每个系统实例内部,都可以加一个熔断保护机制,假设缓存集群最多每秒承载4万读请求,那么你一共有100个系统实例。
- 应该提前限制好,每个系统实例每秒最多请求缓存集群读操作不超过400次,一超过就可以熔断掉,不让请求缓存集群,直接返回一个空白信息,然后用户稍后会自行再次重新刷新页面之类的。
通过系统层自己直接加限流熔断保护措施,可以很好的保护后面的缓存集群、数据库集群之类的不要被打死。

Java生鲜电商平台-缓存架构实战的更多相关文章
- Java生鲜电商平台-订单架构实战
Java生鲜电商平台-订单架构实战 生鲜电商中订单中心是一个电商后台系统的枢纽,在这订单这一环节上需要读取多个模块的数据和信息进行加工处理,并流向下一环节:因此订单模块对一电商系统来说,重要性不言而喻 ...
- Java生鲜电商平台-促销架构以及秒杀解决方案实战
Java生鲜电商平台-促销架构以及秒杀解决方案实战 背景:随着这几年的电商的大热,我们经常看到一些商家为了促销和快速收益,纷纷推出了秒杀活动.不管是日常的超市里面的促销,明星演唱会门票售卖,还是春节订 ...
- Java生鲜电商平台-App系统架构开发与设计
Java生鲜电商平台-App系统架构开发与设计 说明:阅读此文,你可以学习到以下的技术分享 1.Java生鲜电商平台-App架构设计经验谈:接口的设计2.Java生鲜电商平台-App架构设计经验谈:技 ...
- Java生鲜电商平台-生鲜系统中微服务架构设计与分析实战
Java生鲜电商平台-生鲜系统中微服务架构设计与分析实战 说明: Java生鲜系统中微服务的拆分应该如何架构设计与分析呢?以下是我的实战中的设计与经验分析. 目录 1. 微服务简介2. 当前现状3. ...
- Java生鲜电商平台-统一格式返回的API架构设计与实战
Java生鲜电商平台-统一格式返回的API架构设计与实战 说明:随着互联网各岗位精细化分工的普及,出现了很多的系统架构设计,比如常见的前后端分离架构,后端提供接口给前端,前端根据接口的数据进行渲染,大 ...
- Java生鲜电商平台-服务化后的互联网架构实战(针对生鲜电商小程序或者APP)
Java生鲜电商平台-服务化后的互联网架构实战(针对生鲜电商小程序或者APP) “微服务架构”的话题非常之火,很多朋友都在小窗我,说怎么做服务化?解答“怎么做”之前,先得了解“为什么做”. 画外音:做 ...
- Java生鲜电商平台-商家支付系统与对账系统架构实战
Java生鲜电商平台-商家支付系统与对账系统架构实战 说明:关于生鲜电商平台,支付系统是连接消费者.商家(或平台)和金融机构的桥梁,管理支付数据,调用第三方支付平台接口,记录支付信息(对应订单号,支付 ...
- Java生鲜电商平台-SpringCloud微服务架构高并发参数优化实战
Java生鲜电商平台-SpringCloud微服务架构高并发参数优化实战 一.写在前面 在Java生鲜电商平台平台中相信不少朋友都在自己公司使用Spring Cloud框架来构建微服务架构,毕竟现在这 ...
- Java生鲜电商平台-秒杀系统微服务架构设计与源码解析实战
Java生鲜电商平台-秒杀系统微服务架构设计与源码解析实战 Java生鲜电商平台- 什么是秒杀 通俗一点讲就是网络商家为促销等目的组织的网上限时抢购活动 比如说京东秒杀,就是一种定时定量秒杀,在规定 ...
随机推荐
- IPFS学习-哈希
Hashes 哈希函数是接受一些任意输入并返回固定长度值的函数.具体值取决于所使用的给定哈希算法,例如SHA-1(GIT在使用),SHA-256,或者是BLAKE2,但是给予一个输入使用哈希算法总是返 ...
- Spring基础——IOC九种bean声明方式
Spring简介 Spring不是服务于开发web项目的功能,或业务.而是服务于项目的开发,方便各层间的解耦调用,方便对类的批量管理,是提高软件开发效率,降低后期维护成本的框架. Spring的核心思 ...
- ubuntu虚拟环境的操作
查看已经安装的虚拟环境:workon 退出虚拟环境,home目录下执行:deactivate 进入虚拟环境:workon 虚拟环境名
- IEEE754 32位浮点数表示范围
6.1浮点数的数值范围 根据上面的探讨,浮点数可以表示-∞到+∞,这只是一种特殊情况,显然不是我们想要的数值范围. 以32位单精度浮点数为例,阶码E由8位表示,取值范围为0-255,去除0和255这两 ...
- VS2019 开发Django(四)------models
导航:VS2019开发Django系列 继上篇我们匆匆迁移数据库成功之后,又花了一个晚上研究了Django的模型,这里的模型其实就是ORM模型中的Entity,.Net里边用的比较多的有Entity ...
- LeetCode 按序打印
第1114题 我们提供了一个类: public class Foo { public void one() { print("one"); } public void tw ...
- Ligg.EasyWinApp-102-Ligg.EasyWinForm:Function--ControlBox、Tray、Resize、Menu
首先请在VS里打开下面的文件,我们将对源码分段进行说明: Function(功能):一个应用的功能界面,一个应用对应多个Function(功能):如某应用可分为管理员界面.用户界面. 首先我们来看一下 ...
- ABAP分享三 批量上传数据到内表简单示例
tYPE-POOLS: truxs. DATA: BEGIN OF build, name(10) TYPE c, age(3) TYPE c, sex(2) TYPE c, sp ...
- 分布式缓存 Redis 集群搭建
Redis 集群简介 Redis Cluster 即 Redis 集群,是 Redis 官方在 3.0 版本推出的一套分布式存储方案.完全去中心化,由多个节点组成,所有节点彼此互联.Redis 客户端 ...
- IDEA项目更改项目名
点击File,如图:
