引文

​ 最近笔者也在寻找目标检测的其他方向,一般可以继续挖掘的方向是从目标检测的数据入手,困难样本的目标检测,如检测物体被遮挡,极小人脸检测,亦或者数据样本不足的算法。这里笔者介绍一篇小样本(few-shot)数据方向下的域适应(Domain Adaptation)的目标检测算法,这篇新加坡国立大学&华为诺亚方舟实验室的paper《Few-shot Adaptive Faster R-CNN》被收录于CVPR2019,解决的具体问题场景是我们有在普通常见场景下的汽车目标检测,我们只有少量雾天暴雨极劣天气环境下的汽车样本,那么我们可以使用成对采样(pairing-sampling)的方法,源域(source domain)即普通场景下的汽车样本\(Car_{s}\)和目标域(target domain)即恶劣天气下的汽车样本\(Car_{t}\)成对\((Car_s,Car_t)\)组成负样本,另一方面源域下成对组成正样本\((Car_s,Car_s)\),使用GAN的结构,判别器(discriminator)尽可能去分辨正负样本的不同,也就是分辨出源域和目标域的样本,生成器(generator)是尝试去迷惑判别器。这就是这个算法的主要思想,主要是把域适应的思想应用到了目标检测上。

​ 论文源码还没完全开源,只找到了个官方的repo:https://github.com/twangnh/FAFRCNN

思考

在介绍文章具体网络设计和损失函数的设计之前,我们可以带着一个问题去思考。

  1. 用GAN的结构,数据样本使用\(Car_s\)作为正样本、\(Car_t\)作为负样本也可以使判别器(discriminator)分辨出源域和目标域的样本,为什么这里要组成对的去训练?

算法设计

Fig 1. Few-shot Adaptive Faster R-CNN (FAFRCNN)的整体网络结构(其中的SMFR模块后面会介绍到)
在目标检测的任务中,论文作者把域适应问题分成**两个层次**:

    1. 图像级别的域适应
    1. 实例级别的域适应

具体可以看下面Fig2的第一行和第三行,图像级别下的域迁移是整体图像各个像素组成的域迁移,实例级别的域迁移是汽车样本下的域迁移。

Fig 2. 中间为两张来自Cityspaces和Foggy Cityspaces的图片。第一行为图像级别的域迁移,第三行为实例级别的域迁移。

图像级别的域适应

​ 图像级别的域适应(Image-level Adaptation) 是为了完成image-to-image的转换,论文提出了split pooling(SP)的方法,作用是为了随机放置grid,做法也是十分简单,grid cell的宽为w,高为h,然后随机生成sx和xy,grid根据sx和sy调整位置。

Fig 3. grid的选择
​ 得到grid之后,论文把grid与Faster R-CNN中选取anchor boxes一样,采取了三种scale和三种ratio,split pooling对应在提取的特征$f(x)$中也是有大(l)、中(m)、小(s)三种scale: $sp_l(f(x)),sp_m(f(x)),sp_s(f(x))$。

​ 后面就可以用对抗训练的方式训练生成器和判别器了,但是因为目标域的样本是小样本数据,所以这里提出了成对训练的方式,即源域对\(G_{s_1}={(g_s,g_s)}\)和源域-目标域对\(G_{s_2}={(g_s,g_t)}\)判别器判断样本来源,生成器是特征提取器器目标是混淆判别器

\[g_s\sim sp_kf(X_s),g_t\sim sp_k(f(X_T)),k=\{l,m,s\}
\]

\[L_{sp_{sd}}=-\mathbb{E}_{x\sim{G_{s1}}}[logD^{sp_s}(x)]-\mathbb{E}_{x\sim{G_{s2}}}[log(1-D^{sp_s}(x))]
\]

\[L_{im_d}=L_{sp_{sd}}+L_{sp_{md}}+L_{sp_{ld}}
\]

​ 另外论文在图像级别的域适应用了三个GAN,实用性不知道如何。

实例级别的域适应

​ 跟Faster R-CNN中不同的是:foreground ROIs要求更高的IOU阈值(比如原本IOU要求是0.5的,现在可能要0.7)。获得了ROI特征之后会根据ROI的label分组,源域目标特征是\(O_{is}\),目标域目标特征为\(O_{it}\),如果一共有C类,\(i\in[0,C]\),第0类为背景,其实跟图像级别的成对方式一样,源域对\(N_{i1}=\{(n_{is},n_{is})\}\)和源域目标域对\(N_{i2}=\{(n_{is},n_{it})\}\),其中\(n_{is}\sim O_{is},n_{it}\sim O_{it}\),以下为域判别器的损失函数:

\[L_{ins_d}=\sum^C_{i=1}-\mathbb{E}_{x\sim N_{i1}}[logD^{ins}(x)_{i1}]-\mathbb{E}_{y\sim N_{i2}}[logD^{ins}(y)_{i2}]
\]

​ 以下为feature generator的损失函数:

\[L_{ins_g}=\sum^C_{i=1}-\mathbb{E}_{x\sim N_{i1}}[logD^{ins}(x)_{i2}]-\mathbb{E}_{y\sim N_{i2}}[logD^{ins}(y)_{i1}]
\]

源域模型特征正则化

​ 这个部分就是Fig 1中的SMFR模块,全称为Source Model Feature Regularization,他的作用是正则化源域模型,具体来说,就是源域样本\(x_s\)经过论文的域适应adaptation之后的特征提取器\(f_t\)和初始时拥有的仅有源域样本训练的特征提取器\(f_s\)要尽可能的一致,这样才能使模型更加鲁棒,文章用了L2正则。

\[L_{reg}=\mathbb{E}_{x_s\sim X_S}\frac{1}{wh}\Vert{f_s(x_s)-f_t(x_s)}\Vert^2_2
\]

​ 但是因为是目标检测模型,我们更关注的是图片的前景目标本身,所以我们要求的是源域样本\(x_s\)经过特征提取器之后的前景部分变化不大。

\[L_{reg}={E}_{x_s\sim X_S}\frac{1}{k}\Vert{f_s(x_s)-f_t(x_s)*M}\Vert^2_2
\]

​ 其中\(M\)为前景的mask,k为正例掩码位置的个数。

实验结果

实验中数据集采用以下5种:

  • Scenario-1: SIM10K to Udacity (\(S\rightarrow U\));
  • Scenario-2: SIM10K to Cityscapes (\(S\rightarrow C\));
  • Scenario-3: Cityscapes to Udacity (\(C\rightarrow U\));
  • Scenario-4: Udacity to Cityscapes (\(U\rightarrow C\));
  • Scenario-5: Cityscapes to Foggy Cityscapes (\(C\rightarrow F\)).

以下都是采用AP作为对比评价指标。

Fig 4. 左边是SP技术在Scenario-1和Scenario-2的效果。右边是SP技术在Scenario-3和Scenario-4的效果。sp表示的是split pooling,ins表示加入实例级别的域适应,ft表示加入fine-tunning loss。
可以看出,在加入SP技术之后AP得到明显的提高,比**ADDA [1]**高了5个点。

Fig 5. 论文提出的方法在Scenario-5中的各个实例的AP指标对比
从UDA_setting中看到其实并不是全部都能取到最优成绩。

Fig 6. 引入pairing理论的效果

Fig 7. SMFR的效果

总结思考

​ 回答文首的问题,相信很多读者读完全文之后肯定也知道答案了,paper题目就是基于小样本学习方向的,其实需要成对训练的目的就是增加训练样本,如果源域样本\(Car_s\)有n个,目标域样本\(Car_t\)有m个(n>m),那么最后负样本的个数仅仅只有m个,因为是小样本,训练出来的效果也会十分的差。但是如果成对训练(pairing-sampling),正样本为\((Car_s,Car_s)\),理论上样本数量为\(n^2\),为s负样本为\((Car_s,Car_t)\),理论上样本数量为\(n*m\),虽然经过这样笛卡尔积之后的正负样本比没有变,但是负样本数量却是增多了。这也是整篇文章的主要思想,pairing-sampling的去训练。

参考文献

  • [1]. Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In Computer Vision and Pattern Recognition (CVPR), volume 1, page 4, 2017.

CVPR 2019 论文解读 | 小样本域适应的目标检测的更多相关文章

  1. CVPR 2019|PoolNet:基于池化技术的显著性检测 论文解读

    作者 | 文永亮 研究方向 | 目标检测.GAN 研究动机 ​ 这是一篇发表于CVPR2019的关于显著性目标检测的paper,在U型结构的特征网络中,高层富含语义特征捕获的位置信息在自底向上的传播过 ...

  2. 医学AI论文解读 |Circulation|2018| 超声心动图的全自动检测在临床上的应用

    文章来自微信公众号:机器学习炼丹术.号主炼丹兄WX:cyx645016617.文章有问题或者想交流的话欢迎- 参考目录: @ 目录 0 论文 1 概述 2 pipeline 3 技术细节 3.1 预处 ...

  3. CVPR 2019 行人检测新思路:

    CVPR 2019 行人检测新思路:高级语义特征检测取得精度新突破 原创: CV君 我爱计算机视觉 今天 点击我爱计算机视觉置顶或标星,更快获取CVML新技术 今天跟大家分享一篇昨天新出的CVPR 2 ...

  4. 经典论文系列 | 目标检测--CornerNet & 又名 anchor boxes的缺陷

    ​ 前言: 目标检测的预测框经过了滑动窗口.selective search.RPN.anchor based等一系列生成方法的发展,到18年开始,开始流行anchor free系列,CornerNe ...

  5. 腾讯推出超强少样本目标检测算法,公开千类少样本检测训练集FSOD | CVPR 2020

    论文提出了新的少样本目标检测算法,创新点包括Attention-RPN.多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到 ...

  6. 增量学习不只有finetune,三星AI提出增量式少样本目标检测算法ONCE | CVPR 2020

    论文提出增量式少样本目标检测算法ONCE,与主流的少样本目标检测算法不太一样,目前很多性能高的方法大都基于比对的方式进行有目标的检测,并且需要大量的数据进行模型训练再应用到新类中,要检测所有的类别则需 ...

  7. 【论文解读】行人检测:What Can Help Pedestrian Detection?(CVPR'17)

    前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的ex ...

  8. Object Detection · RCNN论文解读

    转载请注明作者:梦里茶 Object Detection,顾名思义就是从图像中检测出目标对象,具体而言是找到对象的位置,常见的数据集是PASCAL VOC系列.2010年-2012年,Object D ...

  9. CVPR2020论文解读:CNN合成的图片鉴别

    CVPR2020论文解读:CNN合成的图片鉴别 <CNN-generated images are surprisingly easy to spot... for now> 论文链接:h ...

随机推荐

  1. C#数据结构_栈和队列

    栈:先进后出,只能在栈顶进行操作. 栈的操作主要包括在栈顶插入元素和删除元素.取栈顶元素和判断栈是否为空等. 栈的接口定义: public interface IStack<T> { in ...

  2. 转载-Spring Boot应用监控实战

    概述 之前讲过Docker容器的可视化监控,即监控容器的运行情况,包括 CPU使用率.内存占用.网络状况以及磁盘空间等等一系列信息.同样利用SpringBoot作为微服务单元的实例化技术选型时,我们不 ...

  3. win8调出右侧菜单栏

    1.快捷键:win+c 2.鼠标放在右下角1s

  4. [python]通过微信公众号“Python程序员”,编写python代码

    今天发现微信公众号中,居然可以编写python代码,很是惊喜,觉得蛮有趣的. 步骤如下: 1.关注微信公众号“Python程序员” 2.关注成功后,点击右下角的“潘多拉”->"Pyth ...

  5. POJ-1325 Machine Schedule 二分图匹配 最小点覆盖问题

    POJ-1325 题意: 有两台机器A,B,分别有n,m种模式,初始都在0模式,现在有k项任务,每项任务要求A或者B调到对应的模式才能完成.问最少要给机器A,B调多少次模式可以完成任务. 思路: 相当 ...

  6. 在CMD命令行进入和退出Python程序

    进入: 直接输入python即可 退出: 方法一:输入exit(),回车 方法二:输入quit(),回车 方法三:CTRL + Z,回车

  7. 在javascript中的浏览器兼容问题以及兼容浏览器汇总(默认事件,阻止冒泡,事件监听。。。)以及解决方式详解

    在javascript中常见的浏览器兼容问题,以及解决方式. 在前端工作当中我们遵循这样的原则:渐进增强和优雅降级   渐进增强(progressive enhancement): 针对低版本浏览器进 ...

  8. JavaScript中选项卡的几种写法

    效果图: 1.基本写法 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  9. Python中字符编码及转码

    python 字符编码及转码 python 默认编码 python 2.X 默认的字符编码是ASCII, 默认的文件编码也是ASCII python 3.X 默认的字符编码是unicode,默认的文件 ...

  10. 通过Service访问应用 (1)

    目录 通过Service访问应用  通过Pod IP访问应用  通过ClusterIP Service在集群内部访问  通过Service访问应用 通过之前的操作,应用部署完成了,我们的Demo网站已 ...