Fractions Again?! UVA - 10976
It is easy to see that for every fraction in the form 1
k
(k > 0), we can always find two positive integers
x and y, x ≥ y, such that:
1
k
=
1
x
+
1
y
Now our question is: can you write a program that counts how many such pairs of x and y there
are for any given k?
Input
Input contains no more than 100 lines, each giving a value of k (0 < k ≤ 10000).
Output
For each k, output the number of corresponding (x, y) pairs, followed by a sorted list of the values of
x and y, as shown in the sample output.
Sample Input
2
12
Sample Output
2
1/2 = 1/6 + 1/3
1/2 = 1/4 + 1/4
8
1/12 = 1/156 + 1/13
1/12 = 1/84 + 1/14
1/12 = 1/60 + 1/15
1/12 = 1/48 + 1/16
1/12 = 1/36 + 1/18
1/12 = 1/30 + 1/20
1/12 = 1/28 + 1/21
1/12 = 1/24 + 1/24
#include <iostream>//求1/n = 1/x + 1/y
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
using namespace std;
int x[],y[];
int main()
{
int n,cnt;
while(cin >> n)
{
memset(x,,sizeof(x));
memset(y,,sizeof(y));
cnt = ;
for(int i=n+;i<=*n;i++)
{
if((i*n)%(i-n)==)//注意这个判断条件,判断等式是否可能成立
{
x[cnt] = (i*n)/(i-n);//求x的式子
y[cnt] = i;
cnt++;
}
}
printf("%d\n",cnt);
for(int i=;i<cnt;i++)
printf("1/%d = 1/%d + 1/%d\n",n,x[i],y[i]);
}
return ;
}
Fractions Again?! UVA - 10976的更多相关文章
- 分数拆分(Fractions Again?!, UVa 10976)
题目链接:https://vjudge.net/problem/UVA-10976 It is easy to see that for every fraction in the form 1k(k ...
- 暴力枚举 UVA 10976 Fractions Again?!
题目传送门 /* x>=y, 1/x <= 1/y, 因此1/k - 1/y <= 1/y, 即y <= 2*k */ #include <cstdio> #inc ...
- UVA 725 UVA 10976 简单枚举
UVA 725 题意:0~9十个数组成两个5位数(或0开头的四位数),要求两数之商等于输入的数据n.abcde/fghij=n. 思路:暴力枚举,枚举fghij的情况算出abcde判断是否符合题目条件 ...
- uva 10976 Fractions Again(简单枚举)
10976 Fractions Again It is easy to see that for every fraction in the form 1 k (k > 0), we can a ...
- Uva 10976 Fractions Again?!
直接暴力 没技巧 y应该从k+1开始循环,因为不然y-k<0的时候 你相当于(x*y) % (负数) 了. #include <iostream> using namespace s ...
- uva 10976 fractions again(水题)——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAB3gAAAM+CAIAAAB31EfqAAAgAElEQVR4nOzdO7KtPJum69GEpAcVQQ ...
- 分数拆分( Fractions Again, UVA 10976)-ACM
It is easy to see that for every fraction in the form (k > 0), we can always find two positive i ...
- UVA 10976 Fractions Again?!【暴力枚举/注意推导下/分子分母分开保存】
[题意]:给你一个数k,求所有使得1/k = 1/x + 1/y成立的x≥y的整数对. [分析]:枚举所有在区间[k+1, 2k]上的 y 即可,当 1/k - 1/y 的结果分子为1即为一组解. [ ...
- 【例题 7-3 UVA - 10976】Fractions Again?!
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] x>=y => \(\frac{1}{x}<=\frac{1}{y}\) => \(\frac{1}{x}= ...
随机推荐
- Something wrong with EnCase v8 index search results
My friend told me that she installed EnCase v8.05 on her workstation which OS version is Win 10. She ...
- C#使用代理IP发送请求
https://www.cnblogs.com/benbenfishfish/p/5830149.html 获取可代理的IP https://www.cnblogs.com/ShalenChe/p ...
- webgl核心要素
WebGL是一种3D绘图标准,这种绘图技术标准允许把JavaScript和OpenGL ES 2.0结合在一起,通过增加OpenGL ES 2.0的一个JavaScript绑定,提供硬件3D加速渲染, ...
- 一文读懂JS中的原型和原型链(图解)
讲原型的时候,我们应该先要记住以下几个要点,这几个要点是理解原型的关键: 1.所有的引用类型(数组.函数.对象)可以自由扩展属性(除null以外). 2.所有的引用类型都有一个’_ _ proto_ ...
- Element UI系列:Select下拉框实现默认选择
实现的主要关键点在于 v-mode 所绑定的值,必须是 options 数组中对应的 value 值
- Mac安装Homebrew的那些事儿
Mac安装Homebrew的那些事儿 最近小明刚换置了一个 Mac 本,想搭建一个属于自己的博客网站,需要用到 Node.js 环境,而Node.js 在 MacOS 中是由 Homebrew 进行安 ...
- Web 字体 font-family 再探秘
之前写过一篇关于Web字体简介及使用技巧的文章: 你该知道的字体 font-family. 该篇文章基本没有太多移动端的字体选择及分析.并且过了这么久,如今的 Web 字体又有了一些新的东西,遂有此文 ...
- 当我们尝试用JavaScipt测网速
npm包地址 https://www.npmjs.com/package/network-speed-test Github地址 https://github.com/penghuwan/networ ...
- react父组件调用子组件中方法
- .net core 添加本地dll
公司内部开发的核心类库,添加到新项目中去,可以使用如下方法. 1.设置包信息 右击项目-属性,选着打包,输入相关信息. 2.核心类库打包成 *.nupkg文件, 3.创建一个文件夹.将打包的nupkg ...