题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1061

题解:显然能满足情况的8皇后的摆法不多,于是便可以用题目给出的状态来匹配各种满足情况的摆法然后找出最小值。还有关于题目的一个条件,皇后之间的移动不能越过皇后之间,其实这个条件并没什么用,因为如果某一个皇后挡住了另一个皇后的移动那么这种摆放方式肯定是不符合的那么肯定要移动某一个所以只要先移动挡住位置的皇后就行。所以得到了两个位置之间移动所需的花费,要么0要么1要么2。然后就是怎么匹配的问题,这个可以用状压来解决。设dp[i][j]表示处理到第i行,j表示取数的状态。然后就是简单的转移,具体看一下代码。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define inf 0X3f3f3f3f
using namespace std;
struct TnT {
int x , y;
}node[10] , aim[10];
char mmp[10][10];
int ans , tm[10][10] , dp[10][1 << 10];
bool vis_col[10] , vis_l[20] , vis_r[20];
int getlen(int i , int j) {
if(node[i].x == aim[j].x && node[i].y == aim[j].y) return 0;
if(node[i].x == aim[j].x && node[i].y != aim[j].y) return 1;
if(node[i].x != aim[j].x && node[i].y == aim[j].y) return 1;
if(abs(node[i].x - aim[j].x) == abs(node[i].y - aim[j].y)) return 1;
return 2;
}
void solve() {
for(int i = 0 ; i < 8 ; i++) {
for(int j = 0 ; j < 8 ; j++) {
tm[i][j] = getlen(i , j);
}
}
memset(dp , inf , sizeof(dp));
dp[0][0] = 0;
for(int i = 0 ; i < 8 ; i++) {
for(int j = 0 ; j < (1 << 8) ; j++) {
if(dp[i][j] == inf) continue;
for(int l = 0 ; l < 8 ; l++) {
if(j & (1 << l)) continue;
dp[i + 1][j | (1 << l)] = min(dp[i + 1][j | (1 << l)] , dp[i][j] + tm[i][l]);
}
}
}
ans = min(ans , dp[8][(1 << 8) - 1]);
}
void dfs(int row) {
if(row >= 8) {
solve();
return ;
}
for(int i = 0 ; i < 8 ; i++) {
if(!vis_col[i] && !vis_l[i - row + 8] && !vis_r[i + row]) {
vis_col[i] = true , vis_l[i - row + 8] = true , vis_r[i + row] = true;
aim[row].x = row , aim[row].y = i;
dfs(row + 1);
vis_col[i] = false , vis_l[i - row + 8] = false , vis_r[i + row] = false;
}
}
}
int main() {
int t , Case = 0;
scanf("%d" , &t);
while(t--) {
int cnt = 0;
memset(mmp , 0 , sizeof(mmp));
for(int i = 0 ; i < 8 ; i++) {
scanf("%s" , mmp[i]);
for(int j = 0 ; j < 8 ; j++) if(mmp[i][j] == 'q') node[cnt].x = i , node[cnt++].y = j;
}
ans = inf;
memset(vis_col , false , sizeof(vis_col));
memset(vis_l , false , sizeof(vis_l));
memset(vis_r , false , sizeof(vis_r));
dfs(0);
printf("Case %d: %d\n" , ++Case , ans);
}
return 0;
}

lightoj 1061 - N Queen Again(状压dp)的更多相关文章

  1. lightoj 1037 - Agent 47(状压dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1037 #include <iostream> #include & ...

  2. lightoj 1086 - Jogging Trails(状压dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1086 题解:题目就是求欧拉回路然后怎么判断有欧拉回路只要所有点的度数为偶数.那 ...

  3. lightoj 1057 - Collecting Gold(状压dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1057 题解:看似有点下记忆话搜索但是由于他是能走8个方向的也就是说两点的距离其 ...

  4. lightoj 1119 - Pimp My Ride(状压dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1119 题解:状压dp存一下车有没有被搞过的状态就行. #include < ...

  5. K - Painful Bases 状压dp

    Painful Bases LightOJ - 1021 这个题目一开始看,感觉有点像数位dp,但是因为是最多有16进制,因为限制了每一个数字都不同最多就有16个数. 所以可以用状压dp,看网上题解是 ...

  6. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  7. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  8. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  9. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  10. 【BZOJ2073】[POI2004]PRZ 状压DP

    [BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...

随机推荐

  1. Java 字符串分隔 split

    Java中的我们可以利用 split 方法(Java.lang.string.split)把字符串按照指定的分割符进行分割,然后返回字符串数组,下面是string.split的用法实例及注意事项. s ...

  2. 云计算网络基础笔记及VLAN交换机配置

  3. 基于python的Elasticsearch索引的建立和数据的上传

    这是我的第一篇博客,还请大家多多指点 Thanks ♪(・ω・)ノ         今天我想讲一讲关于Elasticsearch的索引建立,当然提前是你已经安装部署好Elasticsearch. ok ...

  4. centos yum 安装 mariadb

    1. 在 /etc/yum.repos.d/ 下建立 MariaDB.repo,输入内容 [mariadb] name=MariaDB baseurl=http://yum.mariadb.org/1 ...

  5. Centos安装git并配置ssh

    1.下载git安装包 git-2.9.4.tar.gz 2.解压 tar -xzvf git-2.9.4.tar.gz 3.修改解压后的文件名 mv git-2.9.4 git 4.安装git依赖的库 ...

  6. 【POJ - 2229】Sumsets(完全背包)

    Sumsets 直接翻译了 Descriptions Farmer John 让奶牛们找一些数加起来等于一个给出的数N.但是奶牛们只会用2的整数幂.下面是凑出7的方式 1) 1+1+1+1+1+1+1 ...

  7. 从源码看Flask框架配置管理

    1 引言 Flask作为Python语言web开发的三大顶梁柱框架之一,对于配置的管理当然必不可少.一个应用从开发到测试到最后的产品发布,往往都需要多种不同的配置,例如是否开启调试模式.使用哪个数据库 ...

  8. 最新 Flutter 团队工程师中文演讲 | Flutter 的性能测试和理论

    本视频为 Google Flutter 团队的软件工程师 Xiao Yu 在 2018 谷歌开发者大会做的演讲,演讲题目是<Flutter 的性能测试和理论>. 这个视频里将会通过近半个小 ...

  9. (十四)c#Winform自定义控件-键盘(一)

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  10. 10G的变态SQL文件,如何快速打开编辑?

    工作中,偶尔需要编辑一些大文件,比如 log 文件,后者一些变态的 SQL,此时用平常的编辑器就会显得力不从心,要么直接打不开,要么打开后卡得要死. 本文就给大家推荐几款可以操作大文件的编辑器,准备好 ...