整数规划

原来的km+hunger跑法T了, 拿了一个新的板子, 新的写法是将这原来的找新的最小的d放在了上一次的残留图上,从而减小复杂度, 但是个人还不是很理解为什么最小的d下一次出现的位置一定是这次出现的位置的对应的x的点。

复杂度:n^3

代码:

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int N = ;
int val[N][N];
LL lx[N],ly[N];
int linky[N];
LL pre[N];
bool vis[N];
bool visx[N],visy[N];
LL slack[N];
int n;
void bfs(int k){
LL px, py = ,yy = , d;
memset(pre, , sizeof(LL) * (n+));
memset(slack, inf, sizeof(LL) * (n+));
linky[py]=k;
do{
px = linky[py],d = INF, vis[py] = ;
for(int i = ; i <= n; i++)
if(!vis[i]){
if(slack[i] > lx[px] + ly[i] - val[px][i])
slack[i] = lx[px] + ly[i] -val[px][i], pre[i]=py;
if(slack[i]<d) d=slack[i],yy=i;
}
for(int i = ; i <= n; i++)
if(vis[i]) lx[linky[i]] -= d, ly[i] += d;
else slack[i] -= d;
py = yy;
}while(linky[py]);
while(py) linky[py] = linky[pre[py]] , py=pre[py];
}
void KM(){
memset(lx, , sizeof(int)*(n+));
memset(ly, , sizeof(int)*(n+));
memset(linky, , sizeof(int)*(n+));
for(int i = ; i <= n; i++)
memset(vis, , sizeof(bool)*(n+)), bfs(i);
}
int main(){
int T;
scanf("%d", &T);
for(int _i = ; _i <= T; _i++){
scanf("%d", &n);
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
scanf("%d", &val[i][j]);
val[i][j] = -val[i][j];
}
}
KM();
LL ans = ;
for(int i = ; i <= n; ++i)
ans += lx[i] + ly[i];
printf("Case #%d: %I64d\n", _i, -ans);
}
return ;
}

HDU 6346 整数规划 二分图匹配最优解的更多相关文章

  1. E - Swap - hdu 2819(简单二分图匹配)

    题意:如果可以交换行列,问主对角线能不能全为1 分析:要想主对角线全为1很明显要有N个行列不想同的点就行了,可以用二分图匹配计算出来多能有几个.如果小与N就不能.输出要是对的就行,不必和答案一样 ** ...

  2. A - Fire Net - hdu 1045(二分图匹配)

    题意:一个阵地可以向四周扫射,求出来最多能修多少个阵地,墙不可以被扫射透,阵地不能同行或者或者列(有墙隔着例外) 分析:很久以前就做过这道题..当时是练习深搜来着,不过时间复杂度比较高,现在再看突然发 ...

  3. hdu 5727 Necklace 二分图匹配

    题目链接 给2*n个珠子, n<=9, n个阴n个阳. 然后将它们弄成一个环, 阴阳交替.现在给你m个关系, 每个关系给出a, b. 如果阳a和阴b挨着, 那么a就会变暗. 问你最小变暗几个阳. ...

  4. HDU 6346 整数规划 (最佳完美匹配)

    整数规划 Time Limit: 5500/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  5. HDU - 2819 Swap (二分图匹配-匈牙利算法)

    题意:一个N*N的01矩阵,行与行.列与列之间可以互换.要求变换出一个对角线元素全为1的矩阵,给出互换的行号或列号. 分析:首先一个矩阵若能构成对角线元素全为1,那么矩阵的秩为N,秩小于N的情况无解. ...

  6. Assignment HDU - 2853(二分图匹配 KM 新边旧边)

    传送门: Assignment HDU - 2853 题意:题意直接那松神的题意了.给了你n个公司和m个任务,然后给你了每个公司处理每个任务的效率.然后他已经给你了每个公司的分配方案,让你求出最多能增 ...

  7. G - Oil Skimming - hdu 4185(二分图匹配)

    题意:在大海里有一些石油 ‘#’表示石油, ‘.’表示水,有个人有一个工具可以回收这些石油,不过只能回收1*2大小的石油块,里面不能含有海水,要不就没办法使用了,求出来最多能回收多少块石油 分析:先把 ...

  8. D - 棋盘游戏 - HDU 1281(二分图匹配)

    分析:先求出来最大匹配数,然后用匹配的点一个一个去除看看能否达到最大匹配,能的话就是关键点(很暴力啊),不过竟然才31ms ************************************** ...

  9. F - Rain on your Parade - hdu 2389(二分图匹配,Hk算法)

    题意:给一些人和一些伞的坐标,然后每个人都有一定的速度,还有多少时间就会下雨,问最多能有多少人可以拿到伞. 分析:题意很明确,可以用每个人和伞判断一下是否能够达到,如果能就建立一个联系.不过这道题的数 ...

随机推荐

  1. centos6.5-7编译安装Ansible详细部署

    一.基础介绍==========================================================================================ansi ...

  2. NYOJ 53 最少步数

    题      目    http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=58 思路借鉴   DFS-Deep First Search-深度优先 ...

  3. AI and Robot

    Have you ever seen a movie called "Ex Machina"?  I like this movie very much. Artificial i ...

  4. 代码生成java连接数据库的所需代码(超详细)

    开始学习: round 1:(一开始学习当然还是要一步一步学习的啦,哪有什么一步登天!!!) a.准备工作:1.eclipse,mysql(这两个软件肯定要的啦,不然学什么把它们连接起来) 2.加载驱 ...

  5. Netty源码分析-- ThreadLocal分析(九)

    为了更好地探讨Netty的内存模型,后面会用到,这里我还是决定跟大家一起看下ThreadLocal和FastThreadLocal的源码,有的时候我们在看源码的时候会一层层的遇到很多之前没有看过的内容 ...

  6. Streaming+Sparksql使用sql实时分析 rabbitmq+mongodb+hive

    SparkConf sparkConf = new SparkConf()//此处使用一个链接切记使用一个链接否则汇报有多个sparkcontext错误 .setAppName("Spark ...

  7. (二十七)c#Winform自定义控件-多输入窗体

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  8. 100天搞定机器学习|Day33-34 随机森林

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  9. zabbix自发现item监控

    在zabbix监控中,我们可以通过自带item的可以和自定义key进行监控,但是当所需要的监控项不确定,比如key会根据时间进行变化时,这时候我们就不能把item的key定义死,要通过自发现这个高级功 ...

  10. 《统计学习方法》极简笔记P5:决策树公式推导

    <统计学习方法>极简笔记P2:感知机数学推导 <统计学习方法>极简笔记P3:k-NN数学推导 <统计学习方法>极简笔记P4:朴素贝叶斯公式推导