前面说到了  Flink的JobManager启动(源码分析)  启动了TaskManager

然后  Flink的Job启动JobManager端(源码分析)  说到JobManager会将转化得到的TDD发送到TaskManager的RPC

这篇主要就讲一下,Job在TaskManager端是如何启动的

先来看一下,TaskManager端用来接收JobManager发送过来的TDD对象的RPC接口

在TaskExecutor.java中

这个方法用于接收了一个TaskDeploymentDescriptor对象用于启动任务(上一篇知道这里executionGraph的每一个并行度都会调用deploy方法生成一个TDD)

来看一下具体接收到以后做了什么

创建了一个Task并且将其内部的一个线程启动起来了

注意这里从TDD中得到了InputGate,Partition的信息,用于创建InputGate,ResultPartition

InputGate用于对接上游产生的数据(消费)

ResultPartition用于往下游发送自己产生的数据(生产)

来看一下Task创建,在Task的构造方法中

这里看到创建了对应往下游发送数据的ResultPartition

ResultPartition中创建的SubPartition具体分为

可以看到就是说三个参数分别对应

  PIPELINED    可以边消费边生产,是有背压的,这个partition没有buffer数量的限制(因为背压的控制是通过接,收数据端公用同一个指定大小的bufferPool,以后背压的时候讲)

  其他同理

这里看一下不同类型的ResultPartitionType是创建的什么subpartitions

BLOCKING  这种创建了一个SpillableSubpartition并且传进去了一个ioManager(这个ioManager以后io管理细讲)

大致看了一下就是说这种Subpartition是会落盘的

PIPELINED  而这种方式是完全基于内存的

根据上游的信息创建好ResultPartition以后

接着创建了InputGate用于接收上游的数据,并且在create方法中

会根据partition的位置创建对应的channel,这里可以分为

Local      就是说下游和自己是在同一台机器

Remote 下游是需要通过网络发送的

并且在这里将inputGate和它所有的inputChannels关联了起来

创建完inputGate以后Task就初始化完了,然后会被start()起来,来看下Task的run方法

在run方法中

这个地方会为初始化inputGate与ResultPartition的bufferPool(以后讲到反压在讲)

继续

这里通过反射创建了一个StreamTask的实例

并且

调用了他的invoke()方法,这里也是Job开始的逻辑,来看一下invoke方法

在invoke方法中

只要知道这里会初始化OperatorChain这里包含了我们用户算子的逻辑(这里不细讲,随缘讲到Task操作责任链的时候讲)

然后得到了operatorChain的头headoperator其实这里的头就包含了用户的第一个算子逻辑在里面

然后init()方法中用上面的headoperator初始化了一个inputProcess对象并且关联上了上面创建的inputGate(也是留到责任链讲)

接着

这里就是上面在init方法中创建的inputProcess,并且调用了他的processInput方法

重头戏来了,来看一下processInput方法

这里有个while(true)也就是说这里会一直循环下去

来看一下他循环做什么

这里!!!!这个streamOperator就是上面构造inputProcess时传入的headOperator

这个processElement方法里面就是调用用户的方法啦

也就是不停的从上游接收到数据以后,调用用户具体的处理逻辑

这里job就启动完成了

注意这个while循环内既然开始走我们用户的逻辑,那肯定会先从inputGate关联到的上游获取数据

这里就非常重要了,因为接收数据就包含了很多的机制的实现

包含了watermark处理的逻辑,水印对齐的逻辑,水印更新的逻辑,如下

以及idle停滞流逻辑,流状态更新逻辑

以及如何接收数据逻辑,接收端反压的逻辑,barriers对齐的逻辑,checkpoint触发的逻辑

所以这个StreamInputProcessor.processInput()方法是一个非常重要的方法,以后随缘更新各种机制的时候也会经常看到

Flink的Job启动TaskManager端(源码分析)的更多相关文章

  1. Flink的Job启动JobManager端(源码分析)

    通过前面的文章了解到 Driver将用户代码转换成streamGraph再转换成Jobgraph后向Jobmanager端提交 JobManager启动以后会在Dispatcher.java起来RPC ...

  2. Flink的Job启动Driver端(源码分析)

    整个Flink的Job启动是通过在Driver端通过用户的Envirement的execute()方法将用户的算子转化成StreamGraph,然后得到JobGraph通过远程RPC将这个JobGra ...

  3. Flink中Idle停滞流机制(源码分析)

    前几天在社区群上,有人问了一个问题 既然上游最小水印会决定窗口触发,那如果我上游其中一条流突然没有了数据,我的窗口还会继续触发吗? 看到这个问题,我蒙了???? 对哈,因为我是选择上游所有流中水印最小 ...

  4. Android Activity Deeplink启动来源获取源码分析

    一.前言 目前有很多的业务模块提供了Deeplink服务,Deeplink简单来说就是对外部应用提供入口. 针对不同的跳入类型,app可能会选择提供不一致的服务,这个时候就需要对外部跳入的应用进行区分 ...

  5. Netty服务端启动过程相关源码分析

    1.Netty 是怎么创建服务端Channel的呢? 我们在使用ServerBootstrap.bind(端口)方法时,最终调用其父类AbstractBootstrap中的doBind方法,相关源码如 ...

  6. Flink中异步AsyncIO的实现 (源码分析)

    先上张图整体了解Flink中的异步io 阿里贡献给flink的,优点就不说了嘛,官网上都有,就是写库不会柱塞性能更好 然后来看一下, Flink 中异步io主要分为两种 一种是有序Ordered 一种 ...

  7. Flink中的CEP复杂事件处理 (源码分析)

    其实CEP复杂事件处理,简单来说你可以用通过类似正则表达式的方式去表示你的逻辑,表现能力非常的强,用过的人都知道 开篇先偷一张图,整体了解Flink中的CEP中的  一种重要的图  NFA非确定有限状 ...

  8. Flink 中LatencyMarks延迟监控(源码分析)

    流式计算中处理延迟是一个非常重要的监控metric flink中通过开启配置   metrics.latency.interval  来开启latency后就可以在metric中看到askManage ...

  9. spring mvc 启动过程及源码分析

    由于公司开源框架选用的spring+spring mvc + mybatis.使用这些框架,网上都有现成的案例:需要那些配置文件.每种类型的配置文件的节点该如何书写等等.如果只是需要项目能够跑起来,只 ...

随机推荐

  1. UPC Contest RankList – 2019年第二阶段我要变强个人训练赛第十五场

    传送门 A: Colorful Subsequence •题意 给一个长为n的小写字母序列,从中选出字母组成子序列 问最多能组成多少种每个字母都不相同的子序列 (不同位置的相同字母也算是不同的一种) ...

  2. python3 导入包总提示no moudle named xxx

    一.python中的包有三种 1.python自带的包,如sys, os 2.python的第三方库,如 requests, selenium 3.自己写的.py文件 二.今天主要说下导入自己写的包 ...

  3. java连接mysql数据库jdbc

    jdbc.driver = com.mysql.jdbc.Driverjdbc.url = jdbc:mysql://localhost:3306/数据库名jdbc.username = rootjd ...

  4. JS中构造函数和普通函数有什么区别

    JS中构造函数有普通函数有什么区别? 1.一般规则 构造函数都应该以 一个大写字母开头,eg: function Person(){...} 而非构造函数则应该以一个小写字母开头,eg: functi ...

  5. Linux学习笔记06之DNS

    一.DNS概念:Domain Name System(域名系统) 是互联网上作为域名和IP地址相互映射的一个分布式数据库 二.DNS功能: 完成IP地址和域名之间的一个映射 三.DNS分类: 1.静态 ...

  6. Ubuntu18.04服务器使用netplan网络构建桥接kvm虚拟机

    参考链接 Ubuntu 18.04 LTS安装KVM虚拟机 如何在 Ubuntu 18.04 服务器上安装和配置 KVM KVM日常管理和克隆 KVM详解 1.准备工作 首先需要检查一下CPU是否支持 ...

  7. java类加载器-Bootstrap、 ExtClassLoader、 AppClassLoader的关系

    1. 简单介绍 Bootstrap. ExtClassLoader.  AppClassLoader是java最根正苗红的类加载器. Bootstrap是本地代码编写的(例如C), ExtClassL ...

  8. lvs模式及算法

    一.三种模式 (一).Virtual Servervia Network Address Translation(VS/NAT) 通过网路地址转换,调度器重写请求报文的目标地址,根据预设的调度算法,将 ...

  9. Zabbix-agentd错误整理

    一.无法启动 (一).当时环境 Firewalld与Selinux,Iptables都为关闭 配置环境 OS:CentOS Zabbix-server IP:10.18.43.71 Hostname: ...

  10. Shiro权限管理框架(三):Shiro中权限过滤器的初始化流程和实现原理

    本篇是Shiro系列第三篇,Shiro中的过滤器初始化流程和实现原理.Shiro基于URL的权限控制是通过Filter实现的,本篇从我们注入的ShiroFilterFactoryBean开始入手,翻看 ...