Elasticsearch简介

什么是 Elasticsearch?

Elasticsearch 是一个开源的分布式 RESTful搜索和分析引擎,能够解决越来越多不同的应用场景。

本文内容

本文主要是介绍了ES GEO数据写入和空间检索,ES版本为7.3.1

数据准备

Qgis使用渔网工具,对范围进行切割,得到网格的Geojson

新建索引设置映射

def set_mapping(es,index_name="content_engine",doc_type_name="en",my_mapping={}):
# ignore 404 and 400
es.indices.delete(index=index_name, ignore=[400, 404])
print("delete_index")
# ignore 400 cause by IndexAlreadyExistsException when creating an index
my_mapping = {
"properties": {
"location": {"type": "geo_shape"},
"id": {"type": "long"}
}
}
create_index = es.indices.create(index=index_name)
mapping_index = es.indices.put_mapping(index=index_name, doc_type=doc_type_name, body=my_mapping, include_type_name=True)
print("create_index")
if create_index["acknowledged"] is not True or mapping_index["acknowledged"] is not True:
print("Index creation failed...")

数据插入

使用multiprocessing和elasticsearch.helpers.bulk进行数据写入,每一万条为一组写入,剩下的为一组,然后多线程写入。分别写入4731254条点和面数据。写入时候使用多核,ssd,合适的批量数据可以有效加快写入速度,通过这些手段可以在三分钟左右写入四百多万的点或者面数据。

def mp_worker(features):
count = 0
es = Elasticsearch(hosts=[ip], timeout=5000)
success, _ = bulk(es,features, index=index_name, raise_on_error=True)
count += success
return count
def mp_handler(input_file, index_name, doc_type_name="en"):
with open(input_file, 'rb') as f:
data = json.load(f)
features = data["features"]
del data
act=[]
i=0
count=0
actions = []
for feature in features:
action = {
"_index": index_name,
"_type": doc_type_name,
"_source": {
"id": feature["properties"]["id"],
"location": {
"type": "polygon",
"coordinates": feature["geometry"]["coordinates"]
}
}
}
i=i+1
actions.append(action)
if (i == 9500):
act.append(actions)
count=count+i
i = 0
actions = []
if i!=0:
act.append(actions)
count = count + i
del features
print('read all %s data ' % count)
p = multiprocessing.Pool(4)
i=0
for result in p.imap(mp_worker, act):
i=i+result
print('write all %s data ' % i)

GEO(point)查询距离nkm附近的点和范围选择

from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
starttime = time.time()
_index = "gis_point"
_doc_type = "20190824"
ip = "127.0.0.1:9200"
# 附近nkm 选择
_body = {
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "9km",
"location": {
"lat": 18.1098857850465471,
"lon": 109.1271036098896730
}
}
}
}
}
}
# 范围选择
# _body={
# "query": {
# "geo_bounding_box": {
# "location": {
# "top_left": {
# "lat": 18.4748659238899933,
# "lon": 109.0007435371629470
# },
# "bottom_right": {
# "lat": 18.1098857850465471,
# "lon": 105.1271036098896730
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = scan(es, query=_body, scroll="10m", index=_index, timeout="10m")
for resp in scanResp:
print(resp)
endtime = time.time()
print(endtime - starttime)

GEO(shape)范围选择

from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
starttime = time.time()
_index = "gis"
_doc_type = "20190823"
ip = "127.0.0.1:9200"
# envelope format, [[minlon,maxlat],[maxlon,minlat]]
_body = {
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_shape": {
"location": {
"shape": {
"type": "envelope",
"coordinates": [[108.987103609889, 18.474865923889993], [109.003537162947, 18.40988578504]]
},
"relation": "within"
}
}
}
}
}
} es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = scan(es, query=_body, scroll="1m", index=_index, timeout="1m")
for resp in scanResp:
print(resp)
endtime = time.time()
print(endtime - starttime)

GEO(point)距离聚合

from elasticsearch import Elasticsearch
import time
starttime = time.time()
_index = "gis_point"
_doc_type = "20190824"
ip = "127.0.0.1:9200"
# 距离聚合
_body = {
"aggs" : {
"rings_around_amsterdam" : {
"geo_distance" : {
"field" : "location",
"origin" : "18.1098857850465471,109.1271036098896730",
"ranges" : [
{ "to" : 100000 },
{ "from" : 100000, "to" : 300000 },
{ "from" : 300000 }
]
}
}
}
} es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search( body=_body, index=_index)
for i in scanResp['aggregations']['rings_around_amsterdam']['buckets']:
print(i)
endtime = time.time()
print(endtime - starttime)

中心点聚合

_body ={
"aggs" : {
"centroid" : {
"geo_centroid" : {
"field" : "location"
}
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search( body=_body, index=_index)
print(scanResp['aggregations'])

范围聚合

_body = {
"aggs": {
"viewport": {
"geo_bounds": {
"field": "location" }
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
print(scanResp['aggregations']['viewport'])

geohash聚合

##低精度聚合,precision代表geohash长度
_body = {
"aggregations": {
"large-grid": {
"geohash_grid": {
"field": "location",
"precision": 3
}
}
}
}
# 高精度聚合,范围聚合以及geohash聚合
# _body = {
# "aggregations": {
# "zoomed-in": {
# "filter": {
# "geo_bounding_box": {
# "location": {
# "top_left": "18.4748659238899933,109.0007435371629470",
# "bottom_right": "18.4698857850465471,108.9971036098896730"
# }
# }
# },
# "aggregations": {
# "zoom1": {
# "geohash_grid": {
# "field": "location",
# "precision": 7
# }
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
for i in scanResp['aggregations']['large-grid']['buckets']:
print(i)
#for i in scanResp['aggregations']['zoomed-in']['zoom1']['buckets']:
# print(i)



切片聚合

# 低精度切片聚合,precision代表级别
_body = {
"aggregations": {
"large-grid": {
"geotile_grid": {
"field": "location",
"precision": 8
}
}
}
}
# 高精度切片聚合,范围聚合以切片聚合
# _body={
# "aggregations" : {
# "zoomed-in" : {
# "filter" : {
# "geo_bounding_box" : {
# "location" : {
# "top_left": "18.4748659238899933,109.0007435371629470",
# "bottom_right": "18.4698857850465471,108.9991036098896730"
# }
# }
# },
# "aggregations":{
# "zoom1":{
# "geotile_grid" : {
# "field": "location",
# "precision": 18
# }
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
for i in scanResp['aggregations']['large-grid']['buckets']:
print(i)
# for i in scanResp['aggregations']['zoomed-in']['zoom1']['buckets']:
# print(i)



Elasticsearch和PostGIS相同功能对比

PostGIS最近点查询

SELECT  id,geom, ST_DistanceSphere(geom,'SRID=4326;POINT(109.1681036098896730 18.1299957850465471)'::geometry)
FROM h5
ORDER BY geom <->
'SRID=4326;POINT(109.1681036098896730 18.1299957850465471)'::geometry
LIMIT 1

Elasticsearch最近点查询

from elasticsearch import Elasticsearch
import time
starttime = time.time()
_index = "gis_point"
_doc_type = "20190824"
ip = "127.0.0.1:9200" _body={
"sort": [
{
"_geo_distance": {
"unit": "m",
"order": "asc",
"location": [
109.1681036098896730,
18.1299957850465471
],
"distance_type": "arc",
"mode": "min",
"ignore_unmapped": True
}
}
],
"from": 0,
"size": 1,
"query": {
"bool": {
"must": {
"match_all": {}
}
}
} }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
endtime = time.time()
print(endtime - starttime)

PostGIS范围查询

select id,geom,fid  FROM public."California"
where
ST_Intersects(geom,ST_MakeEnvelope(-117.987103609889,33.40988578504,-117.003537162947,33.494865923889993, 4326))=true
[-117.987103609889, 33.494865923889993], [-117.003537162947, 33.40988578504]

Elasticsearch范围查询

from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
starttime = time.time()
_index = "gis_california"
ip = "127.0.0.1:9200"
# envelope format, [[minlon,maxlat],[maxlon,minlat]] _body = {
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_shape": {
"geom": {
"shape": {
"type": "envelope",
"coordinates": [[-117.987103609889, 33.494865923889993], [-117.003537162947, 33.40988578504]]
},
"relation": "INTERSECTS"
}
}
}
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = scan(es, query=_body, scroll="1m", index=_index, timeout="1m")
i=0
for resp in scanResp:
i=i+1
a=resp
print(i)
endtime = time.time()
print(endtime - starttime)

两种场景中PostGIS的性能更好



参考资料:

1.Elasticsearch(GEO)空间检索查询

2.Elasticsearch官网

3.PostGIS拆分LineString为segment,point

4.亿级“附近的人”,打通“特殊服务”通道

5.PostGIS教程二十二:最近邻域搜索

Elasticsearch(GEO)数据写入和空间检索的更多相关文章

  1. Elasticsearch Lucene 数据写入原理 | ES 核心篇

    前言 最近 TL 分享了下 <Elasticsearch基础整理>https://www.jianshu.com/p/e8226138485d ,蹭着这个机会.写个小文巩固下,本文主要讲 ...

  2. elasticsearch的数据写入流程及优化

    Elasticsearch 写入流程及优化 一. 集群分片设置:ES一旦创建好索引后,就无法调整分片的设置,而在ES中,一个分片实际上对应一个lucene 索引,而lucene索引的读写会占用很多的系 ...

  3. Elasticsearch(GEO)空间检索查询

    Elasticsearch(GEO)空间检索查询python版本 1.Elasticsearch ES的强大就不用多说了,当你安装上插件,搭建好集群,你就拥有了一个搜索系统. 当然,ES的集群优化和查 ...

  4. 通过Hive将数据写入到ElasticSearch

    我在<使用Hive读取ElasticSearch中的数据>文章中介绍了如何使用Hive读取ElasticSearch中的数据,本文将接着上文继续介绍如何使用Hive将数据写入到Elasti ...

  5. 第三百六十七节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)scrapy写入数据到elasticsearch中

    第三百六十七节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)scrapy写入数据到elasticsearch中 前面我们讲到的elasticsearch( ...

  6. 四十六 Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)scrapy写入数据到elasticsearch中

    前面我们讲到的elasticsearch(搜索引擎)操作,如:增.删.改.查等操作都是用的elasticsearch的语言命令,就像sql命令一样,当然elasticsearch官方也提供了一个pyt ...

  7. elasticsearch备份与恢复4_使用ES-Hadoop将ES中的索引数据写入HDFS中

    背景知识见链接:elasticsearch备份与恢复3_使用ES-Hadoop将HDFS数据写入Elasticsearch中 项目参考<Elasticsearch集成Hadoop最佳实践> ...

  8. Elasticsearch准实时索引实现(数据写入到es分片并存储到文件中的过程)

    溢写到文件系统缓存 当数据写入到ES分片时,会首先写入到内存中,然后通过内存的buffer生成一个segment,并刷到文件系统缓存中,数据可以被检索(注意不是直接刷到磁盘) ES中默认1秒,refr ...

  9. 基于百度地图SDK和Elasticsearch GEO查询的地理围栏分析系统(1)

    本文描述了一个系统,功能是评价和抽象地理围栏(Geo-fencing),以及监控和分析核心地理围栏中业务的表现. 技术栈:Spring-JQuery-百度地图WEB SDK 存储:Hive-Elast ...

随机推荐

  1. JS三座大山再学习(三、异步和单线程)

    本文已发布在西瓜君的个人博客,原文传送门 前言 写这一篇的时候,西瓜君查阅了很多资料和文章,但是相当多的文章写的都很简单,甚至互相之间有矛盾,这让我很困扰:同时也让我坚定了要写出一篇好的关于JS异步. ...

  2. 甲小蛙战记:PHP2Java 排雷指南

    (马蜂窝技术原创内容,申请转载请在公众后后台留言,ID:mfwtech ) 大家好,我是来自马蜂窝电商旅游平台的甲小蛙,从前是一名 PHP 工程师,现在可能是一名 PHJ 工程师,以后...... 前 ...

  3. 迁移桌面程序到MS Store(13)——动态检查Win10 API是否可用

    假设我们现有一个WPF程序,需要支持1903以前的Windows 10版本.同时在1903以后的版本上,额外多出一个Ink的功能.那么我们就可以通过ApiInformation.IsApiContra ...

  4. JavaScript 数组学习总结

    类数组转数组 ES5解决方案 let arr = Array.prototype.slice.call(arrlike) ES6解决方案 let arr = Array.from(arrlike) / ...

  5. https的安装(基于阿里云)

    背景介绍:首先我的服务器在是阿里云的云服务器,web服务器使用的是nginx 进入到阿里云的ssl证书的管理界面,按需选择套餐后进行申请,申请完成后进行补全操作,最后是变成如下界面点击--下载进行证书 ...

  6. 程序员的算法课(3)-递归(recursion)算法

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  7. linux下信号量可设值的函数操作

    #include <sys/types.h>#include <sys/ipc.h>#include <sys/sem.h>#include <errno.h ...

  8. SpringBoot使用拦截器、过滤器、监听器

    目录 ## 过滤器 PS: 原文链接https://www.cnblogs.com/haixiang/p/12000685.html,转载请注明出处 过滤器简介 过滤器的使用 拦截器 拦截器介绍 使用 ...

  9. Tensorflow搭建CNN实现验证码识别

    完整代码:GitHub 我的简书:Awesome_Tang的简书 整个项目代码分为三部分: Generrate_Captcha: 生成验证码图片(训练集,验证集和测试集): 读取图片数据和标签(标签即 ...

  10. STM32F4 阿波罗 库函数与C语言知识

    先聊一聊: 之前使用32都是用的库函数,但是没有理解为什么那么操作,有很多的文件我也不知道要看哪一个,感觉云里雾里,没有学清楚一件东西的感觉不太好,于是就在前几天一直跟着比较详细的视频学习.开始老师讲 ...