原文链接:https://www.cnblogs.com/onepixel/p/7674659.html

注意

原文中的算法实现都是基于JS,本文全部修改为C实现,并且统一排序接口,另外增加了一些描述信息,后面会持续更新本文。

0、算法概述

0.1 算法分类

十种常见排序算法可以分为两大类:

  • 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
  • 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度

0.3 相关概念

  • 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
  • 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
  • 时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
  • 空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

0.4 在线学习

这里提供两个算法可视化网站,方便理解这些排序算法:

https://visualgo.net/en/sorting

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

两个链接都可以自己控制元素的移动和流程,十分方便。

推荐第一个链接,可以自己设定需要排序的元素,同时可以查看每一次移动相应的代码片段。不仅如此,这个网站还提供了很多其他常见算法的可视化模型,具体包括如下这些算法:

enjoy!

另外提供一个,深入浅出的算法和数据结构教程:

https://www.programiz.com/dsa

文章浅显易懂,并且提供了常见算法的大部分语言实现。同时附带大量图解,在争取理解算法的基础上,再来具体使用某个编程语言来实现这个算法。

1、冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的末尾

1.1 算法描述

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 重复步骤1~3,直到排序完成。

1.2 动图演示

1.3 代码实现

//冒泡排序
#include<stdio.h>
void swap(int *a,int *b){
int tmp =*a;
*a=*b;
*b=tmp;
}
void sort(int size,int arr[]){
for(int i =1;i<size ;i++){
for(int j=1;j<size-i+1;j++){
if(arr[j]<arr[j-1]){
swap(arr+j-1,arr+j);
}
}
}
} void show(int size,int arr[]){
for(int i=0;i<size;i++){
if(i!=0){
printf(" ");
}
printf("%d",arr[i]);
}
} int main(){
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]={2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

2、选择排序(Selection Sort)

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

2.1 算法描述

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  • 初始状态:无序区为R[1..n],有序区为空;
  • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
  • n-1趟结束,数组有序化了。

2.2 动图演示

  

2.3 代码实现

//选择排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
}
void sort(int size,int arr[]) {
int min;
for(int i =0; i<size ; i++) {
min = i;
for(int j = i;j<size;j++){
if(arr[j]<arr[min]){
min = j;
}
}
swap(arr+min,arr+i);
}
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

2.4 算法分析

表现最稳定的排序算法之一,因为无论什么数据进去都是O(n^2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。

3、插入排序(Insertion Sort)

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

3.1 算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  1. 从第一个元素开始,该元素可以认为已经被排序;

  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描;

  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置;

  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;

  5. 将新元素插入到该位置后;

  6. 重复步骤2~5。

3.2 动图演示

3.2 代码实现

//插入排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
}
void sort(int size,int arr[]) {
int i,j;
for (i = 1; i < size; i++) {
int tmp = arr[i];
for (j = i; j > 0 && arr[j - 1] > tmp; j--) {
arr[j] = arr[j - 1];
}
arr[j] = tmp;
}
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

3.4 算法分析

插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

简单来说就像摸扑克牌一样,抓一张牌,插到手中牌的合适的位置,这就是插入排序。

4、希尔排序(Shell Sort)

1959年Shell发明,第一个突破O(n^2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序

4.1 算法描述

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列个数k,对序列进行k 趟排序;
  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

4.2 动图演示

4.3 代码实现

//希尔排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
}
void sort(int size,int arr[]) {
for (int gap = size/2; gap > 0; gap /= 2) {
for (int i = gap; i < size; i += 1) {
int temp = arr[i];
int j;
for (j = i; j >= gap && arr[j - gap] > temp; j -= gap)
arr[j] = arr[j - gap];
arr[j] = temp;
}
}
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

4.4 算法分析

 

希尔排序,是把序列按照下标的一定增量分组,然后对每组进行插入排序。然后让增量逐渐减少,当增量为1时,整个序列恰好被分为一组,算法结束。

什么意思呢,就是说首先确定一个增量,假如增量是4,那么a[0],a[4],a[8]会被分为一组,a[1],a[5],a[9]会被分为一组,a[2],a[6],a[10]被分为一组,a[3]....然后每个组各自进行插入排序,排序后每个组就是有序的,然后减少增量,重新分组、排序。。。直到增量为1。希尔排序通过这种策略使得整个数组在初始阶段达到从宏观上看基本有序,小的基本在前,大的基本在后。当增量为1的时候,这些序列大多数情况下已经基本有序,只需要进行微调即可。

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版)》的合著者Robert Sedgewick提出的。

5、归并排序(Merge Sort)

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

5.1 算法描述

  • 把长度为n的输入序列分成两个长度为n/2的子序列;
  • 对这两个子序列分别采用归并排序;
  • 将两个排序好的子序列合并成一个最终的排序序列。

5.2 动图演示

5.3 代码实现

//归并排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
} void merge(int arr[], int l, int m, int r)
{
int i, j, k;
int n1 = m - l + 1;
int n2 = r - m; int L[n1], R[n2]; for (i = 0; i < n1; i++)
L[i] = arr[l + i];
for (j = 0; j < n2; j++)
R[j] = arr[m + 1+ j]; i = 0;
j = 0;
k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
} while (i < n1)
{
arr[k] = L[i];
i++;
k++;
} while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
} void mergeSort(int arr[], int l, int r)
{
if (l < r)
{
int m = l+(r-l)/2; mergeSort(arr, l, m);
mergeSort(arr, m+1, r); merge(arr, l, m, r);
}
} void sort(int size,int arr[]) {
mergeSort(arr,0,size-1);
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

5.4 算法分析

归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。

6、快速排序(Quick Sort)

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

6.1 算法描述

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

6.2 动图演示

6.3 代码实现

//快速排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
}
int partition (int arr[], int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j <= high- 1; j++) {
if (arr[j] <= pivot) {
i++;
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);
}
void quickSort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
} void sort(int size,int arr[]) {
quickSort(arr,0,size-1);
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

7、堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

7.1 算法描述

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

7.2 动图演示

7.3 代码实现

//堆排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
} //建立堆
void heapify(int arr[], int n, int i)
{
int largest = i; // 将最大元素设置为堆顶元素
int l = 2*i + 1; // left = 2*i + 1
int r = 2*i + 2; // right = 2*i + 2 // 如果 left 比 root 大的话
if (l < n && arr[l] > arr[largest])
largest = l; // I如果 right 比 root 大的话
if (r < n && arr[r] > arr[largest])
largest = r; if (largest != i)
{
swap(arr+i, arr+largest); // 递归地定义子堆
heapify(arr, n, largest);
}
} void sort(int size,int arr[]) {
// 建立堆
for (int i = size / 2 - 1; i >= 0; i--)
heapify(arr, size, i); // 一个个从堆顶取出元素
for (int i=size-1; i>=0; i--)
{
swap(arr, arr+i);
heapify(arr, i, 0);
}
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

8、计数排序(Counting Sort)

计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

8.1 算法描述

  • 找出待排序的数组中最大和最小的元素;
  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

8.2 动图演示

8.3 代码实现

//计数排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
}
void sort(int size,int arr[]) {
int output[10];
int max = arr[0];
for (int i = 1; i < size; i++) {
if (arr[i] > max)
max = arr[i];
}
// The size of count must be at least the (max+1) but
// we cannot assign declare it as int count(max+1) in C as
// it does not support dynamic memory allocation.
// So, its size is provided statically.
int count[10];
for (int i = 0; i <= max; ++i) {
count[i] = 0;
}
for (int i = 0; i < size; i++) {
count[arr[i]]++;
}
for (int i = 1; i <= max; i++) {
count[i] += count[i - 1];
}
for (int i = size - 1; i >= 0; i--) {
output[count[arr[i]] - 1] = arr[i];
count[arr[i]]--;
}
for (int i = 0; i < size; i++) {
arr[i] = output[i];
}
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

8.4 算法分析

计数排序是一个稳定的排序算法。当输入的元素是 n 个 0到 k 之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k),其排序速度快于任何比较排序算法。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法。

9、桶排序(Bucket Sort)

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

9.1 算法描述

  • 设置一个定量的数组当作空桶;
  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;
  • 对每个不是空的桶进行排序;
  • 从不是空的桶里把排好序的数据拼接起来。

9.2 图片演示

9.3 代码实现

//桶排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
} int getMax(int array[], int size) {
int max = array[0];
for (int i = 1; i < size; i++)
if (array[i] > max)
max = array[i];
return max;
}
void sort(int size,int arr[]) {
// The size of bucket must be at least the (max+1) but
// we cannot assign declare it as int bucket(max+1) in C as
// it does not support dynamic memory allocation.
// So, its size is provided statically.
int bucket[10];
const int max = getMax(arr, size);
for (int i = 0; i <= max; i++) {
bucket[i] = 0;
}
for (int i = 0; i < size; i++) {
bucket[arr[i]]++;
}
for (int i = 0, j = 0; i <= max; i++) {
while (bucket[i] > 0) {
arr[j++] = i;
bucket[i]--;
}
}
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

9.4 算法分析

桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

10、基数排序(Radix Sort)

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

10.1 算法描述

  • 取得数组中的最大数,并取得位数;
  • arr为原始数组,从最低位开始取每个位组成radix数组;
  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

10.2 动图演示

10.3 代码实现

//基数排序
#include<stdio.h>
void swap(int *a,int *b) {
int tmp =*a;
*a=*b;
*b=tmp;
} int getMax(int array[], int n) {
int max = array[0];
for (int i = 1; i < n; i++)
if (array[i] > max)
max = array[i];
return max;
}
void countingSort(int array[], int size, int place) {
int output[size + 1];
int max = (array[0] / place) % 10;
for (int i = 1; i < size; i++) {
if (((array[i] / place) % 10) > max)
max = array[i];
}
int count[max + 1];
for (int i = 0; i < max; ++i)
count[i] = 0;
for (int i = 0; i < size; i++)
count[(array[i] / place) % 10]++;
for (int i = 1; i < 10; i++)
count[i] += count[i - 1];
for (int i = size - 1; i >= 0; i--) {
output[count[(array[i] / place) % 10] - 1] = array[i];
count[(array[i] / place) % 10]--;
}
for (int i = 0; i < size; i++)
array[i] = output[i];
}
void sort(int size,int arr[]) {
int max = getMax(arr, size);
for (int place = 1; max / place > 0; place *= 10)
countingSort(arr, size, place);
} void show(int size,int arr[]) {
for(int i=0; i<size; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",arr[i]);
}
} int main() {
int a=1,b=2;
swap(&a,&b);
printf("a=%d b=%d\n",a,b);
int arr[10]= {2,1,4,3,7,5,6,8,9,0};
show(10,arr);
sort(10,arr);
printf("\n");
show(10,arr);
}

10.4 算法分析

基数排序基于分别排序,分别收集,所以是稳定的。但基数排序的性能比桶排序要略差,每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。假如待排数据可以分为d个关键字,则基数排序的时间复杂度将是O(d*2n) ,当然d要远远小于n,因此基本上还是线性级别的。

基数排序的空间复杂度为O(n+k),其中k为桶的数量。一般来说n>>k,因此额外空间需要大概n个左右。

【转载】常见十大经典排序算法及C语言实现【附动图图解】的更多相关文章

  1. 十大经典排序算法(java实现、配图解,附源码)

    前言: 本文章主要是讲解我个人在学习Java开发环境的排序算法时做的一些准备,以及个人的心得体会,汇集成本篇文章,作为自己对排序算法理解的总结与笔记. 内容主要是关于十大经典排序算法的简介.原理.动静 ...

  2. 十大经典排序算法+sort排序

    本文转自:十大经典排序算法,其中有动图+代码详解,本文简单介绍+个人理解. 排序算法 经典的算法问题,也是面试过程中经常被问到的问题.排序算法简单分类如下: 这些排序算法的时间复杂度等参数如下: 其中 ...

  3. 十大经典排序算法的 JavaScript 实现

    计算机领域的都多少掌握一点算法知识,其中排序算法是<数据结构与算法>中最基本的算法之一.排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大 ...

  4. 一文搞定十大经典排序算法(Java实现)

    本文总结十大经典排序算法及变形,并提供Java实现. 参考文章: 十大经典排序算法总结(Java语言实现) 快速排序算法—左右指针法,挖坑法,前后指针法,递归和非递归 快速排序及优化(三路划分等) 一 ...

  5. 十大经典排序算法最强总结(含JAVA代码实现)(转)

    十大经典排序算法最强总结(含JAVA代码实现)   最近几天在研究排序算法,看了很多博客,发现网上有的文章中对排序算法解释的并不是很透彻,而且有很多代码都是错误的,例如有的文章中在“桶排序”算法中对每 ...

  6. 十大经典排序算法最强总结(含Java、Python码实现)

    引言 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法.排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面 ...

  7. python基础__十大经典排序算法

    用Python实现十大经典排序算法! 排序算法是<数据结构与算法>中最基本的算法之一.排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大, ...

  8. 十大经典排序算法(python实现)(原创)

    个人最喜欢的排序方法是非比较类的计数排序,简单粗暴.专治花里胡哨!!! 使用场景: 1,空间复杂度 越低越好.n值较大: 堆排序 O(nlog2n) O(1) 2,无空间复杂度要求.n值较大: 桶排序 ...

  9. JavaScript 数据结构与算法之美 - 十大经典排序算法汇总(图文并茂)

    1. 前言 算法为王. 想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手:只有内功深厚者,前端之路才会走得更远. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 ...

随机推荐

  1. asp.net core 3.0 中使用 swagger

    asp.net core 3.0 中使用 swagger Intro 上次更新了 asp.net core 3.0 简单的记录了一下 swagger 的使用,那个项目的 api 比较简单,都是匿名接口 ...

  2. SpringBoot应用进阶

    一.表单验证 Controller接收一个对象数据的表单,如下: 需要对表单friend里的age属性做一个限制,如下 第一个是最小值,第二个是出错时报的错误信息 怎么知道验证结果呢?如下: 二.AO ...

  3. 从实践角度重新理解BIO和NIO

    前言 这段时间自己在看一些Java中BIO和NIO之类的东西,看了很多博客,发现各种关于NIO的概念说的天花乱坠头头是道,可以说是非常的完整,但是整个看下来之后,自己对NIO还是一知半解的状态,所以这 ...

  4. ZCU104搭建Ubuntu桌面系统-1安装Petalinux

    参考教程: https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841948/Zynq+UltraScalePlus+MPSoC+-+Ubu ...

  5. 使用Spring 或Spring Boot实现读写分离( MySQL实现主从复制)

    http://blog.csdn.net/jack85986370/article/details/51559232 http://blog.csdn.net/neosmith/article/det ...

  6. java学习4-面向对象(上)

    1.类和对象 修饰符可以是public.final.abstract或者完全省略这三个修饰符 类名命名规则:每个单词首字母大写,其他字母全部小写,单词与单词之间不使用分隔符 修饰符:可以省略,也可以是 ...

  7. Twitter-Snowflake:自增ID算法

    简介 Twitter 早期用 MySQL 存储数据,随着用户的增长,单一的 MySQL 实例没法承受海量的数据,后来团队就研究如何产生完美的自增ID,以满足两个基本的要求: 每秒能生成几十万条 ID ...

  8. Redis 文章一 之持久化机制的介绍

    我们已经知道对于一个企业级的redis架构来说,持久化是不可减少的 企业级redis集群架构:海量数据.高并发.高可用 持久化主要是做灾难恢复,数据恢复,也可以归类到高可用的一个环节里面去,比如你re ...

  9. VUE图片剪辑插件 React图片剪辑插件

    React图片剪辑插件: https://github.com/roadmanfong/react-cropper React图片剪辑插件: https://github.com/xyxiao001/ ...

  10. React + MobX 状态管理入门及实例

    前言 现在最热门的前端框架,毫无疑问是React. React是一个状态机,由开始的初始状态,通过与用户的互动,导致状态变化,从而重新渲染UI. 对于小型应用,引入状态管理库是"奢侈的&qu ...