根据之前最短路径算法里提到的,我们只要放松所有边直到其全部失效就可以得到最短路径

注意:图中不能有负圈。否则当负圈中某个点经过这个负圈的所有边的松弛操作后,这个点的的d[i]就会减小,此时会发现它可以通过这个负圈的松弛操作不断使它自身不断变小。对于存在负圈的图,最短路无意义 

由于是有关边的算法,并且我们不需要关注边之间的关系,只需要放松所有边即可

模板入下:

struct edge {int from, to, cost};

edge es[MAX_E]; //边 

int d[MAX_V];
int V, E; for (int i = ; i <= V; i++) d[i] = INF;
d[s] = ;
while (true) {
bool update = false;
for (int i = ; i <= E; i++) {
edge e = es[i];
//d[e.from]=INF时距离为无穷大,没有意义
if (d[e.from]!=INF && d[e.to]>d[e.from]+e.cost]) {
d[e.to] = d[e.from] + cost;
update = true;
}
}
if (!update) break;
}

Bellman-Ford 算法的更多相关文章

  1. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  2. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  3. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  4. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  5. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  6. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  7. 图论算法——最短路径Dijkstra,Floyd,Bellman Ford

    算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...

  8. POJ 2240 Arbitrage (Bellman Ford判正环)

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:27167   Accepted: 11440 Descri ...

  9. poj1860 兑换货币(bellman ford判断正环)

    传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...

  10. ACM/ICPC 之 Bellman Ford练习题(ZOJ1791(POJ1613))

    这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time ...

随机推荐

  1. 通往Google之路:***

    *** & BBR 安装 系统支持:CentOS 6+, Debian 7+, Ubuntu 12+ 内存要求:≥128M --- 前提 满足以上要求的VPS服务器一台 安装基础命令工具:yu ...

  2. mpvue 小程序加载不了图片 Error: Failed to load local image resource /images/xx.png the server responded with a status of 404 (HTTP/1.1 404 Not Found)

    mpvue开发小程序时候,要添加静态本地图片 <img src="../../images/bg.png" alt=""> 会报错: VM14878 ...

  3. 16 input默认样式清除

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8& ...

  4. 老雷socket编程之PHP利用socket扩展实现聊天服务

    老雷socket编程之PHP利用socket扩展实现聊天服务 socket聊天服务原理 PHP有两个socket的扩展 sockets和streamssockets socket_create(AF_ ...

  5. php实现redis锁机制

    <?php class Redis_lock { public static function getRedis() { $redis = new redis(); $redis->con ...

  6. 长春理工大学第十四届程序设计竞赛(重现赛)L

    L.Homework Stream 题目链接:https://ac.nowcoder.com/acm/contest/912/L 题目 作为大珩班尖子生,小r每天有很多作业要完成,例如工图.工图和工图 ...

  7. redis整合springboot的helloworld

    引入依赖 compile 'org.springframework.boot:spring-boot-starter-data-redis' 使用redis有两种方法 1.Jedis Jedis je ...

  8. SCUT 125 :笔芯回文(DP)

    https://scut.online/p/125 125. 笔芯回文 题目描述 bxbx有一个长度一个字符串SS,bxbx可以对其进行若干次操作. 每次操作可以删掉一个长度为k(1 \leq k \ ...

  9. iOS组件化开发一远端私有库建立(二)

    公共库业务,基础层划分! 一.构建私有云,本文推荐为码云 1.构建名称为LuckTimeSpec,选择私有建立: 2.Copy地址的https 链接: 二.打开终端 输入: cd /Users/zha ...

  10. 补习系列(22)-全面解读 Spring Profile 的用法

    目录 一.简介 二. 区分Bean对象 三. 设置Profile 3.1 WebApplicationInitializer接口 3.2 通过 web.xml定义 3.3 JVM启动参数 3.4 环境 ...