题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=693

题意:有一个 k 核的处理器和 n 个工作,全部的工作都须要在一个核上处理一个单位的时间,每一个核在不同一时候间处理同一个工作的花费是递增的,每一个核一次仅仅能处理一个工作,求运用k个核处理这n个工作的最小花费。

分析:

分析可知,求处理全部工作的最小花费,而每次选择怎么处理我们能够通过容量都为1的边来让网络流处理,这样就转化为最小费用最大流。

首先设一个超级源点s,连接全部的工作,流量1,花费0,然后每一个工作建一个边连接每一个工作不同一时候间处理的花费,流量为1,花费为花费,然后每一个时间段在连接汇点,流

量为k( 由于在单位1的时间里有k个核在处理k个工作 ),花费为0,然后套模板求一个从 s 到 t 的最小费用最大流。

有一个优化就是发现每一个工作不同一时候间处理的花费是递增的,那么每一个核肯定每次是选择在 n/k+1前 的时间处理,所以之后的边能够直接不建边,节省时间。(经測试发现这个题目没有这一步优化会超时)

代码:

#include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
using namespace std;
#define CL(x,v); memset(x,v,sizeof(x));
#define INF 0x3f3f3f3f
#define LL long long
#define REP(i,r,n) for(int i=r;i<=n;i++)
#define RREP(i,n,r) for(int i=n;i>=r;i--)
const int MAXN=222222;
struct Edge{
int from,to,cap,flow,cost;
};
struct MCMF{
int n,m,s,t;
vector<Edge>edges;
vector<int> G[MAXN];
int inq[MAXN];
int d[MAXN];
int p[MAXN];
int a[MAXN];
void init(int n){
this->n=n;
for(int i=0;i<=n;i++)G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap,int cost){ //建边
edges.push_back((Edge){from,to,cap,0,cost});
edges.push_back((Edge){to,from,0,0,-cost});
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int s,int t,int& flow,int& cost){ //最短路增光
for(int i=0;i<=n;i++)d[i]=INF;
CL(inq,0);
d[s]=0;inq[s]=1;p[s]=0;a[s]=INF; queue<int>Q;
Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();
inq[u]=0;
for(int i=0;i<G[u].size();i++){
Edge& e=edges[G[u][i]];
if(e.cap>e.flow&&d[e.to]>d[u]+e.cost){
d[e.to]=d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to]){
Q.push(e.to);
inq[e.to]=1;
}
}
}
}
if(d[t]==INF)return false;
flow+=a[t];
cost+=d[t]*a[t];
int u=t;
while(u!=s){
edges[p[u]].flow+=a[t];
edges[p[u]^1].flow-=a[t];
u=edges[p[u]].from;
}
return true;
}
int Mincost(int s,int t){ ///求费用
int flow=0,cost=0;
while(BellmanFord(s,t,flow,cost));
return cost;
}
}; int n,m,k;
MCMF solver;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int core,work,x;
scanf("%d%d",&core,&work);
int tmp=work/core+1;
solver.init(work*2+2);
for(int i=1;i<=work;i++)
{
solver.AddEdge(0,i,1,0);
for(int j=1;j<=work;j++)
{
scanf("%d",&x);
if(j<=tmp)
solver.AddEdge(i,j+work,1,x);
}
}
for (int i=1;i<=work;i++)
{
if (i<=tmp)
solver.AddEdge(i+work,work*2+1,core,0);
}
int s=0,t=work*2+1;
int ans=solver.Mincost(s,t);
printf("%d\n",ans);
}
return 0;
}

Doctor NiGONiGO’s multi-core CPU(最小费用最大流模板)的更多相关文章

  1. 图论算法-最小费用最大流模板【EK;Dinic】

    图论算法-最小费用最大流模板[EK;Dinic] EK模板 const int inf=1000000000; int n,m,s,t; struct node{int v,w,c;}; vector ...

  2. HDU3376 最小费用最大流 模板2

    Matrix Again Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)To ...

  3. 洛谷P3381 最小费用最大流模板

    https://www.luogu.org/problem/P3381 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用 ...

  4. 最大流 && 最小费用最大流模板

    模板从  这里   搬运,链接博客还有很多网络流题集题解参考. 最大流模板 ( 可处理重边 ) ; const int INF = 0x3f3f3f3f; struct Edge { int from ...

  5. POJ2135 最小费用最大流模板题

    练练最小费用最大流 此外此题也是一经典图论题 题意:找出两条从s到t的不同的路径,距离最短. 要注意:这里是无向边,要变成两条有向边 #include <cstdio> #include ...

  6. 【网络流#2】hdu 1533 - 最小费用最大流模板题

    最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...

  7. POJ 2135 Farm Tour (最小费用最大流模板)

    题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...

  8. 2018牛客网暑期ACM多校训练营(第五场) E - room - [最小费用最大流模板题]

    题目链接:https://www.nowcoder.com/acm/contest/143/E 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...

  9. 最小费用最大流模板(POJ 2135-Farm Tour)

    最近正好需要用到最小费用最大流,所以网上就找了这方面的代码,动手写了写,先在博客里存一下~ 代码的题目是POJ2135-Farm Tour 需要了解算法思想的,可以参考下面一篇文章,个人觉得有最大流基 ...

随机推荐

  1. php 目录及文件操作

    // bool is_dir(string $filename) 判断给定文件名是否是一个目录.// resource opendir(string $path[,resource $context] ...

  2. 经典SQL练习题

    题目地址:http://blog.csdn.net/qaz13177_58_/article/details/5575711 1. 查询Student表中的所有记录的Sname.Ssex和Class列 ...

  3. Python学习 - 简单抓取页面

    最近想做一个小web应用,就是把豆瓣读书和亚马逊等写有书评的网站上关于某本书的打分记录下来,这样自己买书的时候当作参考. 这篇日志这是以豆瓣网为例,只讨论简单的功能. 向服务器发送查询请求 这很好处理 ...

  4. 简单学C——第四天

    数组 在学数组之前,有必要把前面的知识复习一遍,当然我的复习,仅仅只是提一下,而对于你,则应该认真的看一下前面的知识点,不懂可以百度,哈哈. 前面我们大致学了 1.定义变量,2.数据的输入与输出,3. ...

  5. Log4Net配置注意点

    log4Net的配置文章一搜一大把,配置使用还是有一些点花费了很多时间,这里整理一下,添上坑,让Developer走的更稳. 编程式配置路径 新建一个配置文件,通过写代码来动态加载log4Net的配置 ...

  6. 自定义UICollectionViewController之后 如何设置UICollectionView的布局方式--备用

    我们很多时候使用UICollectionView 可能都是直接创建 UICollectionView   通过初始化的时候  传入一个布局对象的方式来使用UICollectionView 比如我们之前 ...

  7. 从内部剖析C# 集合之---- HashTable

    这是我在博客园的第一篇文章,写的不好或有错误的地方,望各位大牛指出,不甚感激. 计划写几篇文章专门介绍HashTable,Dictionary,HashSet,SortedList,List 等集合对 ...

  8. sqlplus 打印很乱,而且很短就换行

    set linesize 可以解决 设置行打印的字符长度,set linesize 400解决

  9. 网页错误404 or 500

    HTTP 错误 400 400 请求出错 由于语法格式有误,服务器无法理解此请求.不作修改,客户程序就无法重复此请求. HTTP 错误 401 401.1 未授权:登录失败 此错误表明传输给服务器的证 ...

  10. Contest20140705 testB DP

    testB 输入文件: testB.in 输出文件testB.out 时限2000ms 问题描述: 方师傅有两个由数字组成的串 a1,a2,⋯,an 和 b1,b2,⋯,bm.有一天,方师傅感到十分无 ...