cholesky分解
接着LU分解继续往下,就会发展出很多相关但是并不完全一样的矩阵分解,最后对于对称正定矩阵,我们则可以给出非常有用的cholesky分解。这些分解的来源就在于矩阵本身存在的特殊的
结构。对于矩阵A,如果没有任何的特殊结构,那么可以给出A=L*U分解,其中L是下三角矩阵且对角线全部为1,U是上三角矩阵但是对角线的值任意,将U正规化成对角线为1的矩阵,产生分解A = L*D*U, D为对角矩阵。如果A为对称矩阵,那么会产生A=L*D*L分解。如果A为正定对称矩阵,那么就会产生A=G*G,可以这么理解G=L*sqrt(D)。
A=L*D*U分解对应的Matlab代码如下:
function[L, D, U] =zldu(A)
%LDU decomposition of square matrix A. The first step for Cholesky
%decomposition
[m, n] = size(A);
if m ~= n
error('support square matrix only')
end
L = eye(n);
U = eye(n);
d = zeros(n,1);
for k=1:n
v = zeros(n, 1);
if k == 1
v(k:end) = A(k:end, k);
else
m = L(1:k-1, 1:k-1) \ A(1:k-1, k);
for j = 1:k-1
U(j, k) = m(j) / d(j);
end
v(k:end) = A(k:end, k) - L(k:end, 1:k-1)*m(:);
end
d(k) = v(k);
if k < n
L(k+1:end, k) = v(k+1:end)/v(k);
end
end
D = diag(d);
分解的稳定性和精度结果如下:
mean of my lu : 9.0307e-15
variance of my lu : 4.17441e-27
mean of matlab lu : 3.70519e-16
variance of matlab lu : 2.07393e-32
这里的计算是基于Gaxpy,所以稳定性和精确度相当之好。
A=L*D*L分解对应代码如下,这里要求A必须为对称矩阵:
function[D, L] =zldl(A)
%A = L*D*L' another version of LU decomposition for matrix A
[m, n] = size(A);
if m ~= n
error('support square matrix only')
end
L = eye(n);
d = zeros(n,1);
for k=1:n
v = zeros(n,1);
for j=1:k-1
v(j) = L(k, j)*d(j);
end
v(k) = A(k,k) - L(k, 1:k-1)*v(1:k-1);
d(k) = v(k);
L(k+1:end, k) = (A(k+1:end,k) - A(k+1:end, 1:k-1)*v(1:k-1)) / v(k);
end
D = diag(d);
对应分解的精确度和稳定度如下:
mean of my lu : 35.264
variance of my lu : 29011.2
mean of matlab lu : 5.88824e-16
variance of matlab lu : 8.40037e-32
使用如下的代码做测试:
n = 1500;
my_error = zeros(1, n);
sys_error = zeros(1, n);
for i = 1:n
test = gensys(5);
[zd, zl] = zldl(test);
[l, d] = ldl(test);
my_error(i) = norm(zl*zd*(zl') - test, 'fro');
sys_error(i) = norm(l*d*(l') - test, 'fro');
end
fprintf('mean of my lu : %g\n', mean(my_error));
fprintf('variance of my lu : %g\n', var(my_error));
fprintf('mean of matlab lu : %g\n', mean(sys_error));
fprintf('variance of matlab lu : %g\n', var(sys_error));
对于运算的精度如此之低的原因并不清楚
A=G*G’; cholesky分解对应的代码如下:
function[G] =zgaxpychol(A)
%cholesky decomposition for symmetric positive definite matrix
%the only requirement is matrix A: symmetric positive definite
[m, n] = size(A);
if m ~= n
error('support square matrix only')
end
G = eye(n);
for k=1:n
v = A(:,k);
if k > 1
v(:) = v(:) - G(:,1:k-1)*G(k,1:k-1)';
end
G(k:end, k) = v(k:end) / sqrt(v(k));
end
mean of my lu : 1.10711e-15
variance of my lu : 3.04741e-31
mean of matlab lu : 5.5205e-16
variance of matlab lu : 9.64928e-32
自己代码的精确度和稳定性可以媲美Matlab的代码,产生这种结果的原因应该是positive sysmetric definite matrix的原因,这段代码基于gaxpy的结果,下面给出另外一种基于外积的运算结果。
function[G] =zopchol(A)
%cholesky decomposition based on rank-1 matrix update
[m, n] = size(A);
if m ~= n
error('support square matrix only')
end
G = zeros(n);
for k=1:n
G(k,k) = sqrt(A(k,k));
G(k+1:end, k) = A(k+1:end, k) / G(k,k);
%update matrix A
for j = (k+1):n
A(k+1:end,j) = A(k+1:end,j) - G(j,k)*G(k+1:end,k);
end
end
对应的测试结果如下:
mean of my lu : 9.33114e-16
variance of my lu : 1.71179e-31
mean of matlab lu : 9.92241e-16
variance of matlab lu : 1.60667e-31
对应的测试程序如下,这里使用系统自带的chol函数完成cholesky分解。
n = 1500;
my_error = zeros(1, n);
sys_error = zeros(1, n);
for i = 1:n
test = genpd(5);
[zg] = zopchol(test);
l = chol(test, 'lower');
my_error(i) = norm(zg*(zg') - test, 'fro');
sys_error(i) = norm(l*(l') - test, 'fro');
end
fprintf('mean of my lu : %g\n', mean(my_error));
fprintf('variance of my lu : %g\n', var(my_error));
fprintf('mean of matlab lu : %g\n', mean(sys_error));
fprintf('variance of matlab lu : %g\n', var(sys_error));
将两个结果想比较,可以发现两个版本的cholesky分解的精确度和稳定度差不多。
Cholesky分解的核心在于矩阵对称正定的结构,基于LU分解的再次扩展。
cholesky分解的更多相关文章
- 矩阵分解----Cholesky分解
矩阵分解是将矩阵拆解成多个矩阵的乘积,常见的分解方法有 三角分解法.QR分解法.奇异值分解法.三角分解法是将原方阵分解成一个上三角矩阵和一个下三角矩阵,这种分解方法叫做LU分解法.进一步,如果待分解的 ...
- Cholesky分解(Cholesky decomposition / Cholesky )
Cholesky decomposition In linear algebra, the Cholesky decomposition or Cholesky is a decomposition ...
- Cholesky分解 平方根法
一种矩阵运算方法,又叫Cholesky分解.所谓平方根法,就是利用对称正定矩阵的三角分解得到的求解对称正定方程组的一种有效方法.它是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解.它要 ...
- QR分解
从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (上)
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...
- SVD分解及线性最小二乘问题
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky ...
- 矩阵分解-----LDL分解
若一个矩阵A是正定的,那么该矩阵也可以唯一分解为\[{\bf{A = LD}}{{\bf{L}}^{\bf{T}}}\] 其中L是对角元素都为1的下三角矩阵,D是对角元素都为正数的对角矩阵.还是以三维 ...
- QR 分解
将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质. 预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...
- 【原创】开源Math.NET基础数学类库使用(01)综合介绍
本博客所有文章分类的总目录:[总目录]本博客博文总目录-实时更新 开源Math.NET基础数学类库使用总目录:[目录]开源Math.NET基础数学类库使用总目录 前言 ...
随机推荐
- C++学习路线
已经确定做C++后台的工作了,因此,要对C++要越来越熟悉才行,今天,在此列出学习和温习C++书籍的顺序,从而由浅入深地学习C++. 1. <C++ primer> 2. <Acce ...
- Android之发送短信的两种方式
SMS涉及的主要类SmsManager 实现SMS主要用到SmsManager类,该类继承自java.lang.Object类,下面我们介绍一下该类的主要成员. 公有方法: ArrayList< ...
- Linux磁盘管理:LVM逻辑卷基本概念及LVM的工作原理
一.传统的磁盘管理 其实在Linux操作系统中,我们的磁盘管理机制和windows上的差不多,绝大多数都是使用MBR(Master Boot Recorder)都是通过先对一个硬盘进行分区,然后再将该 ...
- asp.net错误日志写入
当我们一个web项目开发已完成,测试也通过了后,就把他放到网上去,但是,bug是测不完的,特别是在一个大的网络环境下.那么,我们就应该记录这些错误,然后改正.这里,我的出错管理页面是在global.a ...
- JS获取客户端的窗口大小
function getClientSize() { var c = window, b = document, a = b.documentElement; if (c.in ...
- hibernate_validator_05
校验约束 一,认识Validator---Validation中最主要的接口 1.怎么获取一个Validator--Validation.buildDefaultValidatorFactory() ...
- 基于VC的串行通信技术应用实例
在工业控制中,串口是常用的计算机与外部串行设备之间的数据传输通道,由于串行通信方便易行,所以应用广泛. 本文将介绍在Windows平台下串行通信的工作机制和用Visual C++设计串行通信程序的 ...
- ubuntu 更新 php5.5.9 到 php 5.6
add-apt-repository ppa:ondrej/php5-5.6 apt-get update apt-get install php5 为了使用 add-apt-repsitory 需要 ...
- JavaScript奇技淫巧44招
JavaScript是一个绝冠全球的编程语言,可用于Web开发.移动应用开发(PhoneGap.Appcelerator).服务器端开发(Node.js和Wakanda)等等.JavaScript还是 ...
- js删除选中的复选框中的父辈。
function scsx(){ var cb=document.getElementsByName('checkbox') if(confirm('删除?')){ for (var i=0;i< ...