点此连接到UVA10494

思路: 采取一种, 边取余边取整的方法, 让这题变的简单许多~

AC代码:

#include<stdio.h>
#include<string.h> int main() {
long long mod;
long long k, tmp;
int len;
int ans[10010];
char num[10010], ch[2];
while(scanf("%s%s%lld", num, ch, &mod) != EOF) {
len = strlen(num);
k = 0;
tmp = 0;
memset(ans, 0, sizeof(ans));
for(int i = 0; i < len; i++) {
tmp = tmp * 10 + num[i] - '0';
ans[k++] = tmp / mod; //此步导致ans有前导0, 后续要判断
tmp = tmp % mod;
}
if(ch[0] == '/') {
int pos;
for(pos = 0; pos < 10010; pos++)
if(ans[pos])
break; //从头判起, 直到第一个不为0的位置
if(pos == 10010)
printf("0");
else
for(int i = pos; i < k; i++)
printf("%d", ans[i]);
printf("\n");
}
else
printf("%lld\n", tmp);
}
return 0;
}

UVA 10494 (13.08.02)的更多相关文章

  1. UVA 465 (13.08.02)

     Overflow  Write a program that reads an expression consisting of twonon-negative integer and an ope ...

  2. UVA 424 (13.08.02)

     Integer Inquiry  One of the first users of BIT's new supercomputer was Chip Diller. Heextended his ...

  3. UVA 10106 (13.08.02)

     Product  The Problem The problem is to multiply two integers X, Y. (0<=X,Y<10250) The Input T ...

  4. UVA 10194 (13.08.05)

    :W Problem A: Football (aka Soccer)  The Problem Football the most popular sport in the world (ameri ...

  5. UVA 253 (13.08.06)

     Cube painting  We have a machine for painting cubes. It is supplied withthree different colors: blu ...

  6. UVA 573 (13.08.06)

     The Snail  A snail is at the bottom of a 6-foot well and wants to climb to the top.The snail can cl ...

  7. UVA 10499 (13.08.06)

    Problem H The Land of Justice Input: standard input Output: standard output Time Limit: 4 seconds In ...

  8. UVA 10025 (13.08.06)

     The ? 1 ? 2 ? ... ? n = k problem  Theproblem Given the following formula, one can set operators '+ ...

  9. UVA 536 (13.08.17)

     Tree Recovery  Little Valentine liked playing with binary trees very much. Her favoritegame was con ...

随机推荐

  1. 【转】Spring.NET学习笔记——目录

    目录 前言 Spring.NET学习笔记——前言 第一阶段:控制反转与依赖注入IoC&DI Spring.NET学习笔记1——控制反转(基础篇) Level 200 Spring.NET学习笔 ...

  2. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  3. ACM hdu 1019 Least Common Multiple

    Problem Description The least common multiple (LCM) of a set of positive integers is the smallest po ...

  4. Binary Tree Inorder Traversal 解题思路 ×

    问题: 非递归中序遍历二叉树 思路: 1.大循环,判断节点是否为空,栈是否为空 2.不为空:点进栈,向左走 3.为空:为空,出栈,读取值,向右走

  5. mongoengine教程1

    mongoengine安装过程,建议先安装好pip,pip是不Python不错的安装包管理器,安装命令:pip install mongoengine. mongoengine是mongodb的pyt ...

  6. java子类实例初始化过程

    子类的实例化主要分为两个步骤: <1>.类相关静态内容 初始化: *先父类再子类:  1.父类的static属性:   2.父类的static块:   3.子类的static属性:   4 ...

  7. C#委托(Delegate)学习日记

    在.NET平台下,委托类型用来定义和响应应用程序中的回调.事实上,.NET委托类型是一个类型安全的对象,指向可以以后调用的其他方法.和传统的C++函数指针不同,.NET委托是内置支持多路广播和异步方法 ...

  8. [topcoder]UnsealTheSafe

    http://community.topcoder.com/stat?c=problem_statement&pm=4471&rd=10711 这题果然是道简单题,图+DP.拿道题便觉 ...

  9. python模块与包加载机制

    模块的搜索路径: When a module named spam is imported, the interpreter searches for a file named spam.py in ...

  10. 转---在ASP.NET MVC中实现登录后回到原先的界面

    有这样的一个需求:提交表单,如果用户没有登录,就跳转到登录页,登录后,跳转到原先表单提交这个页面,而且需要保持提交表单界面的数据. 提交表单的页面是一个强类型视图页,如果不考虑需要保持提交表单界面的数 ...