1.Interrupt:

The occurrence of an event is usually signaled by aninterrupt from either the hardware or thesoftware. Hardware may trigger an interrupt at any time by sending a signal to the CPU,usually by way thesystem bus. Software may trigger an interrupt by executing a special

operation called a system call(also called a monitor call).

2.storage:

The CPU can load instructions only from memory, so any programs to run must be stored there.General-purpose computers run most of their programs from rewriteabe memory,called main memory(also called random-access memory or RAM). The bootstrap program is typically stored in read-only memory(ROM) or electrically erasable programmable read-only memory (EEPROM). Because ROM cannot be changed,only static

programs are stored there. The unchangeable nature of ROM is of use in game cartridges(盒式磁盘),so manufacturers can distribute games that cannot be modified.

All forms of memory provide an array of words, or storage units.Each word has its own address. Interaction is achieved through a sequence of load or store instructions to specific memory addresses. The load instruction moves a word from main memory to an internal register within the CPU, whereas the store instruction moves the content of a register to main memory.Aside from explicit loads and stores, the CPU automatically loads instructions from main memory for execution.

3.von Neumann's Architecture:

Most modern computer system are based on the von Neumann architecture . In such an architecture, both programs and data are stored in main memory, which is managed by a CPU. A typical instruction-execution cycle ,as executed on such a system, first fetches an instruction from memory and stores that instruction in the instruction register.The instruction is then decoded and may cause operands(操作数) to be fetched from memory and stored in

some internal register. After the instruction on the operands has been executed, the result may be stored back in memory. Notice that the memory unit sees only a stream of memory addresses; it does not know how they are generated or what they are for. Accordingly, we can ignore how a memory address is generated by a program. we are interested only in the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory permanently. This arrangement usually is not possible, for two reasons:

1. Main memory is usually too small to store all needed programs and data permanently.

2. Main memory is a volatile(挥发性的,不稳定的) storage device that loses its contents when power is turned off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension of main memory. The main requirement for secondary storage is that it be able to hold large quantities of data permanently. The most common secondary-storage device is a magnetic disk,which provides storage for both programs and data. Most programs (system and application) are stored on a disk until they are loaded into memory. Many programs then use the disk as both the source and the destination of their processing.

4.DMA (direct memory access)

To start an I/O operation, the device driver loads the appropriate registers within the device controller. The device controller, in turn, examines the contents of these registers to determine what action to take (such as“read a character from the  keyboard”). The controller starts the transfer of data from the device to its local buffer. Once the transfer of data is complete, the device controller informs the device driver via an interrupt that it has finished its operation. The device driver then returns control to the operating system, possibly returning the data or a pointer to the data if the operation was a read. For other operations, the device driver returns status information.

This form of interrupt-driven I/O is fine for moving small amounts of data but can produce high overhead when used for bulk data movement such as disk I/O. To solve this problem,direct memory access (DMA)is used. After setting up buffers, pointers, and counters for the I/O device, the device controller transfers an entire block of data directly to or from its own buffer storage to memory, with no intervention by the CPU. Only one interrupt is generated per block, to tell the device driver that the operation has completed, rather than the one interrupt per byte generated for low-speed devices. While the device
controller is performing these operations, the CPU is available to accomplish other work.

Some high-end systems use switch rather than bus architecture. On these systems, multiple components can talk to other components concurrently, rather than competing for cycles on a shared bus. In this case,DMA is even more effective. Figure 1.5 shows theinterplay of all components of a computer system.

interrupt & storage & DMA的更多相关文章

  1. STM32 HAL drivers < STM32F7 >

    Overview of HAL drivers The HAL drivers were designed to offer a rich set of APIs and to interact ea ...

  2. 八、mini2440裸机程序之UART(1)简单介绍【转】

    转自:http://blog.csdn.net/shengnan_wu/article/details/8298869 一.概述          S3C2440通用异步接收和发送(UART)提供了三 ...

  3. 阅读ARm芯片手册 阅读方法

    一 overview 1 table of contents -*** 2 product overview -***  芯片概述 3 feature  ***    每一个功能的特点 4 block ...

  4. S3C2410中文芯片手册-11.串口

    目录 11 UART Overview Featrues UART Operation Data Transmission Data Reception Auto Flow Control(AFC) ...

  5. 基于ARM的SoC设计入门[转]

    原文:基于ARM的SoC设计入门 我们跳过所有对ARM介绍性的描述,直接进入工程师们最关心的问题.要设计一个基于ARM的SoC,我们首先要了解一个基于ARM的SoC的结构.图1是一个典型的SoC的结构 ...

  6. Qemu/kvm虚拟化源码解析学习视频资料

    地址链接:tao宝搜索:Linux云计算KVM Qemu虚拟化视频源码讲解+实践​https://item.taobao.com/item.htm?ft=t&id=646300730262 L ...

  7. 【SPI】Polling Interrupt DMA

    三種將資料在I/O間傳送的方法有 1. Polling2. Interrupt-driven I/O3. DMA(Direct Memory Access) Polling:最簡單的方式讓I/O de ...

  8. 第九章 Mass Storage设备

    9.1 Mass Storage设备介绍 USB的Mass Storage类是USB大容量储存设备类(Mass Storage Device Class).专门用于大容量存储设备,比如U盘.移动硬盘. ...

  9. Optimizing TLB entries for mixed page size storage in contiguous memory

    A system and method for accessing memory are provided. The system comprises a lookup buffer for stor ...

随机推荐

  1. 黄源河《左偏树的应用》——数字序列(Baltic 2004)

    这道题哪里都找不到. [问题描述] 给定一个整数序列a1, a2, … , an,求一个不下降序列b1 ≤ b2 ≤ … ≤ bn,使得数列{ai}和{bi}的各项之差的绝对值之和 |a1 - b1| ...

  2. SQL中的NULL值

    除is [not] null之外,空值不满足任何查找条件.–如果null参与算术运算,则该算术表达式的值为null.–如果null参与比较运算,则结果可视为false.在SQL-92中可看成unkno ...

  3. Linux下动态库的使用

    1.生成动态库: gcc -fPIC -shared -o libdemo.so demo.c 考虑程式库major的升级会破坏兼容性:而minior的升级则可能不会,一般建议用以下方式来生成动态库. ...

  4. 解决android启动程序时,会出现一个短暂的白色空白界面的问题

    在启动的activity定义style为透明就可以了(android:theme="@android:style/Theme.Translucent")

  5. iOS __block用法

    没有__block qualifier的primitive c types会直接在创建block的时候被capture到block里.有__block qualifier的话,会在调用block的时候 ...

  6. Detect the Virus - ZOJ 3430(恶心的自动机)

    题目大意:给你一些病毒的特征码,然后再给一些文本,判断每个文本有多少种病毒,不过给的字符串都是加密处理过的,给的每个字符串都有对应一个64以内的一个数(题目里面那个表就是),然后可以把这个64以内的这 ...

  7. 视频监控之VSCloud版本计划

    下个版本会加入 1.人脸检测和人脸识别功能 2. 车牌识别. https://code.google.com/p/vscloud/ 下载连接 https://sourceforge.net/proje ...

  8. OpenRisc-43-or1200的IF模块分析

    引言 “喂饱饥饿的CPU”,是计算机体系结构设计者时刻要考虑的问题.要解决这个问题,方法大体可分为两部分,第一就是利用principle of locality而引进的cache技术,缩短取指时间,第 ...

  9. linux —— 学习笔记(环境变量的设置)

    目录 环境变量概要 与环境变量相关的文件 设置环境变量 注意以及相关 1.环境变量概要 环境变量,简单来说,是储存了环境信息的变量.它可以让你在不指明全部路径的情况下执行某脚本或某应用程序,比如在 l ...

  10. objective-c 加号 减号 - +

    “加号代表static”是错误的说法,可能跟你那样表达的人其实意思是:“前置加号的方法相当于Java 里面的静态方法”. 在Oc中,方法分为类方法和实例方法. 前置加号(+)的方法为类方法,这类方法是 ...