2442: [Usaco2011 Open]修剪草坪

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 500  Solved: 244
[Submit][Status]

Description

在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。

然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。

靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。

Input

* 第一行:空格隔开的两个整数N和K

* 第二到N+1行:第i+1行有一个整数E_i

Output

* 第一行:一个值,表示FJ可以得到的最大的效率值。

Sample Input

5 2
1
2
3
4
5

输入解释:

FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛

Sample Output

12

FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。

HINT

Source

Gold

题解:

刚开始看见有种线段树的赶脚,后来发现情况有点儿复杂。。。

status里代码为何这么短?所以肯定不是线段树

考虑DP

f[i] 表示选 a[i] 能获得的最大和

g[i] 表示不选 a[i] 能获得的最大和

则  f[i]=max(g[j]+s[i]-s[j])=max(g[j]-s[j])+s[i]  i-j<=k

g[i]=max(g[i-1],f[i-1])

然后我们发现能更新到 i 的j 范围单调不减,而我们要求一段区间内的最大值

这让我们想到了单调队列,然后就可以随便虐了

代码;

 #include<cstdio>

 #include<cstdlib>

 #include<cmath>

 #include<cstring>

 #include<algorithm>

 #include<iostream>

 #include<vector>

 #include<map>

 #include<set>

 #include<queue>

 #include<string>

 #define inf 1000000000

 #define maxn 100000+10

 #define maxm 500+100

 #define eps 1e-10

 #define ll long long

 #define pa pair<int,int>

 #define for0(i,n) for(int i=0;i<=(n);i++)

 #define for1(i,n) for(int i=1;i<=(n);i++)

 #define for2(i,x,y) for(int i=(x);i<=(y);i++)

 #define for3(i,x,y) for(int i=(x);i>=(y);i--)

 #define mod 1000000007

 using namespace std;

 inline int read()

 {

     int x=,f=;char ch=getchar();

     while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}

     while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}

     return x*f;

 }
ll f[maxn],g[maxn],s[maxn];
int n,k,q[maxn]; int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();k=read();
for1(i,n)s[i]=s[i-]+read();
int l=,r=;
for1(i,n)
{
while(l<r&&i-q[l]>k)l++;
f[i]=g[q[l]]-s[q[l]]+s[i];
g[i]=max(f[i-],g[i-]);
while(l<=r&&g[q[r]]-s[q[r]]<=g[i]-s[i])r--;
q[++r]=i;
}
printf("%lld\n",max(f[n],g[n])); return ; }

BZOJ2442: [Usaco2011 Open]修剪草坪的更多相关文章

  1. bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1159  Solved: 593[Submit] ...

  2. [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1118  Solved: 569[Submit] ...

  3. BZOJ2442 Usaco2011 Open修剪草坪(动态规划+单调队列)

    显然可以dp.显然可以单调队列优化一下. #include<iostream> #include<cstdio> #include<cmath> #include& ...

  4. bzoj2442[Usaco2011 Open]修剪草坪——单调队列优化

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 考虑记录前 i 个.末尾 j 个连续选上的最大值.发现时空会爆. 又发现大量的转移形如 ...

  5. BZOJ 2442: [Usaco2011 Open]修剪草坪( dp )

    dp dp[ i ] 表示第 i 个不选 , 前 i 个的选择合法的最小损失 , dp[ i ] = min( dp[ j ] ) ( max( 0 , i - 1 - k ) <= j < ...

  6. BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP

    BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...

  7. 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP

    第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...

  8. BZOJ 2442: [Usaco2011 Open]修剪草坪

    Description 在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠.然而,FJ的草坪非常脏乱,因此,FJ只能够让他的 ...

  9. BZOJ 2442: [Usaco2011 Open]修剪草坪 单调队列

    Code: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...

随机推荐

  1. PHP安全编程:HTTP请求欺骗(转)

    一个比欺骗表单更高级和复杂的攻击方式是HTTP请求欺骗.这给了攻击者完全的控制权与灵活性,它进一步证明了不能盲目信任用户提交的任何数据. 为了演示这是如何进行的,请看下面位于http://exampl ...

  2. [转] linux之sed用法

    sed是一个很好的文件处理工具,本身是一个管道命令,主要是以行为单位进行处理,可以将数据行进行替换.删除.新增.选取等特定工作,下面先了解一下sed的用法sed命令行格式为:         sed ...

  3. 2015 UESTC Training for Search Algorithm & String - J - 全都是秋实大哥 【KMP】

    给出一个字符串,求每个前缀的最小循环节长度,并输出整个字符串的最小循环节.字符串长度为3*10^6 找循环节这种问题还是要用KMP对于长度为i的字符串 i%(i-f[i])==0 此时,它的最小循环节 ...

  4. NYOJ2括号配对问题

    括号配对是最基本的栈的问题,它是栈入门的经典题目,思路是,如果是左括号直接进栈,如果是右括号,这时就要比较栈顶的元素与他是否匹配,如果匹配则出栈,否则进栈,下面是代码的实现: #include < ...

  5. Python自动化之5种session类型

    Django中默认支持Session,其内部提供了5种类型的Session供开发者使用: 数据库(默认) 缓存 文件 缓存+数据库 加密cookie 1.数据库Session Django默认支持Se ...

  6. codevs3008加工生产调度(Johnson算法)

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...

  7. Dedecms当前位置{dede:field name='position'/}修改

    这个实在list_article.htm模板出现的,而这个模板通过loadtemplage等等一系列操作是调用的include 下的arc.archives.class.php $this->F ...

  8. windowIsTranlucent 属性

    项目中踩的大坑.  先埋. int alwaysFinish = 0; if (android.os.Build.VERSION.SDK_INT >= android.os.Build.VERS ...

  9. 【SQL Server】SQL与Excel的数据互通导入导出

    转载至:http://jingyan.baidu.com/article/73c3ce28c839b7e50243d950.html

  10. PHP MySQL 读取数据

    PHP MySQL 读取数据 从 MySQL 数据库读取数据 SELECT 语句用于从数据表中读取数据: SELECT column_name(s) FROM table_name 如需学习更多关于 ...