题意:现在有n个精灵,两种精灵球各m1和m2个,每个精灵单独使用第一种精灵球有pi的概率被捕获,单独使用第二种精灵球有ui的概率被捕获,同时使用有1-(1-pi)*(1-ui)的概率被捕获.一种精灵球在一个精灵身上只能用一次,但你可以在一个精灵上用两种精灵球.求最优策略下期望获得精灵的只数.

如果一只精灵上不能同时用两种精灵球,那么就是一个显然的费用流建图,点A表示第一种精灵球,点B表示第二种精灵球,源点向A,B各连一条流量等于对应精灵球数目的边(费用为0),A,B分别向每个精灵连一条流量为1,费用为对应的pi/ui的边,每个精灵连出一条流量为1的边指向汇点,限制只能用一个精灵球,跑最大费用流即可(这里最大费用流等于最大费用最大流,因为精灵球用得越多期望抓捕的精灵数至少不会减少).

现在我们需要考虑同时使用两种精灵球的情况,但并不能简单地把精灵连向汇点的边流量+1,因为这样相加的时候我们重复计算了两种精灵球都生效的情况,这个概率是pi*ui.

那么我们想法减去多出的一部分即可,同时还要保证只使用一个精灵球的时候不减去这部分,那么我们从每个精灵向汇点引出两条流量为1的边,一条费用为0,一条费用为-pi*ui,使用第一个精灵球时最长路一定走费用为0的边,使用第二个精灵球时必须走第二条边从而去除了重复的情况.跑最大费用流即可.

坑点:这道题的费用是实数,spfa比较大小的时候一定要用eps,不然会卡出TLE….

#include<cstdio>
#include<cstring>
const int maxn=,maxm=;
struct edge{
int to,next,w;double cost;
}lst[maxm];int len=,first[maxn];
void addedge(int a,int b,int w,double cost){
lst[len].to=b;lst[len].next=first[a];lst[len].w=w;lst[len].cost=cost;first[a]=len++;
lst[len].to=a;lst[len].next=first[b];lst[len].w=;lst[len].cost=-cost;first[b]=len++;
}
bool inq[maxn];
int s,t,T,head,tail,q[maxn],vis[maxn],prt[maxn];double dis[maxn];
bool spfa(){
head=tail=;q[tail++]=s;inq[s]=true;
vis[s]=++T;dis[s]=;prt[s]=-;
while(head!=tail){
int x=q[head++];head%=maxn;inq[x]=false;
for(int pt=first[x];pt!=-;pt=lst[pt].next){
if(lst[pt].w==)continue;
if(vis[lst[pt].to]!=T||dis[x]+lst[pt].cost-dis[lst[pt].to]>1e-){//这个地方神坑…直接比较大小TLE到死…
vis[lst[pt].to]=T;dis[lst[pt].to]=dis[x]+lst[pt].cost;
prt[lst[pt].to]=pt;
if(!inq[lst[pt].to]){
inq[lst[pt].to]=true;q[tail++]=lst[pt].to;tail%=maxn;
}
}
}
}
return vis[t]==T;
}
double maxcost(){
double ans=;
while(spfa()&&dis[t]>){
ans+=dis[t];
for(int pt=prt[t];pt!=-;pt=prt[lst[pt^].to]){
lst[pt].w--;lst[pt^].w++;
}
}
return ans;
}
double p[maxn],u[maxn];
int main(){
memset(first,-,sizeof(first));
int n,m1,m2;scanf("%d%d%d",&n,&m1,&m2);
s=;t=n+;
addedge(s,n+,m1,);addedge(s,n+,m2,);
for(int i=;i<=n;++i)scanf("%lf",p+i);
for(int i=;i<=n;++i)scanf("%lf",u+i);
for(int i=;i<=n;++i){
addedge(n+,i,,p[i]);addedge(n+,i,,u[i]);
addedge(i,t,,);addedge(i,t,,-p[i]*u[i]);
}
printf("%.5f\n",maxcost());
return ;
}

Codeforces739E Gosha is hunting的更多相关文章

  1. 2019.03.12 codeforces739E. Gosha is hunting(dp凸优化)

    传送门 题意:nnn个物品,有aaa个XXX道具和bbb个YYY道具,XXX道具移走第iii个物品概率为pip_ipi​,YYY道具移走第iii个道具概率为uiu_iui​. 对于每个物品每种道具最多 ...

  2. 【CF739E】Gosha is hunting 贪心

    [CF739E]Gosha is hunting 题意:有n个小精灵,你有a个普通球和b个超级球,用普通球抓住第i只小精灵的概率为$A_i$,用超级球抓住第i只小精灵的概率为$u_i$.你必须一开始就 ...

  3. 【CF739E】Gosha is hunting(动态规划,凸优化)

    [CF739E]Gosha is hunting(动态规划,凸优化) 题面 洛谷 CF 题解 一个\(O(n^3)\)的\(dp\)很容易写出来. 我们设\(f[i][a][b]\)表示前\(i\)个 ...

  4. CF739E Gosha is hunting DP+wqs二分

    我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的 ...

  5. CF739E Gosha is hunting

    法一: 匹配问题,网络流! 最大费用最大流,S到A,B流a/b费0,A,B到i流1费p[i]/u[i],同时选择再减p[i]*u[i]? 连二次!所以i到T流1费0流1费-p[i]*u[i] 最大流由 ...

  6. Codeforces 749E Gosha is hunting 二分+DP

    很神奇的一题 看完题解不由惊叹 题意:$n$个神奇宝贝 $a$个普通球 $b$个高级球 普通球抓住$i$神奇宝贝的概率为$u[i]$ 高级球为$p[i]$ 一起用为$u[i]+p[i]-u[i]*p[ ...

  7. CF739E Gosha is hunting 【WQS二分 + 期望】

    题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i] ...

  8. Codeforces.739E.Gosha is hunting(DP 带权二分)

    题目链接 \(Description\) 有\(n\)只精灵,两种精灵球(高级和低级),每种球能捕捉到第\(i\)只精灵的概率已知.求用\(A\)个低级球和\(B\)个高级球能捕捉到精灵数的最大期望. ...

  9. CF 739E Gosha is Hunting

    有 $n$ 个 Pokemon,你有 $A$ 个一类精灵球,$B$ 个二类精灵球 分别给出每个 Pokemon 被这两类精灵球捕捉的概率 求抓到 Pokemon 的最优期望个数 $n\leq 2000 ...

随机推荐

  1. LinGo:投资问题——线性规划

    一.根据题目所给数据,建立一张表格方便查看 项目A 项目B 项目C 项目D 可投资年 1,2,3,4 3 2 1,2,3,4,5 收回本利年 次年年末 第5年 第5年 当年年末 本利 1.06 1.1 ...

  2. STL——heap的4大操作

    STL的堆操作 STL里面的堆操作一般用到的只有4个:make_heap();.pop_heap();.push_heap();.sort_heap(); 他们的头文件函数是#include < ...

  3. iOS开发之自定义输入框(利用UITextField及UITextView)

    drawRect的工作原理:首先苹果是不推荐我们直接使用drawRect进行工作的,直接调用他也是没有任何效果的.苹果要求我们调用UIView类中的setNeedsDisplay方法,则程序会自动调用 ...

  4. ios将一个项目完全导为另一个项目(tool)

    --前言:有时开始一个新项目,但新项目跟已做完的一个项目很类似,基本可以在原有项目上更改.这个时候,可以new一个新project,在将相应的代码文件copy到新的project,配置工程各参数,库等 ...

  5. AndroidStudio文件夹结构视图讲解

    近期,Google已经打算废弃Eclipse.而要大力支持他的亲生儿子AndroidStudio了,已经不在维护Eclipse了,也就是说在Eclipse上面出了什么问题.Google已经不在会管了, ...

  6. mysql中判断字段为空

    mysql中判断字段为null或者不为null   在mysql中,查询某字段为空时,切记不可用 = null, 而是 is null,不为空则是 is not null   select nulco ...

  7. JS和利用openssl的object C加密得到相同的aes加密密文

    这是之前接到的一个工作内容,项目原本的登录操作是获得账号和密码以后,对密码进行一遍MD5加密,然后传递账号和密文到cgi文件.在c中获取到账户以后,从数据库中获取到密码,对密码进行一次MD5的加密,然 ...

  8. hdu 2211

    题意: 中文题目,自己看.............. 递归调用.... 没什么难度,注意下long long就行........ AC代码: #include <iostream> #de ...

  9. 嵌套repeater

    通过外层repeater的值来进行内层repeater的数据绑定 前台代码部分: <asp:repeater runat="server" id="repeater ...

  10. Android学习手记(6) TabActivity和TabHost

    使用TabHost可以实现标签式效果,将两个Activity放在两个Tab内. 首先,需要基于MainActivity创建一个TabHost对象. TabHost tabHost = this.get ...