【CF】509E Pretty Song
数学规律题,很容易计算的。以初始测试数据3为例。
Str Y I S V O W E L
--------------------------
Len 1 2 3 4 | 5 6 7 8
Y + | +
I + + | + +
S
V
O + + + + | + + + +
W
E + | +
L
首先注意1-4与5-8是对称的(仅长度不同)。长度为2的总数可以在长度为1的总数的基础上累加计算(因为2-len-1的字符若为Vow则各递增1),长度为3的可以在长度为2的基础上累加计算。
故,首先求得cnt[]数组表示从1开始到位置n的Vow字符数目。然后遍历1-len/2的长度,求得结果,若len为奇数,则单独再计算一次(len+1)/2。
其实就是递推规律题目,O(n)时间复杂度。
/* 509E */
#include <iostream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
using namespace std; #define isVow(ch) (ch=='I'||ch=='E'||ch=='A'||ch=='O'||ch=='U'||ch=='Y') const int maxn = 5e5+;
char s[maxn];
int cnt[maxn]; int main() {
int i, j, k;
int len;
__int64 sum;
int l, r, tmp;
double ans; #ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif scanf("%s", s+);
memset(cnt, , sizeof(cnt));
for (i=; s[i]; ++i) {
if (isVow(s[i]))
cnt[i] = cnt[i-]+;
else
cnt[i] = cnt[i-];
}
len = i-;
ans = .;
sum = ;
l = ;
r = len;
for (i=, j=len; i<=len/; ++i, --j) {
sum += cnt[r] - cnt[l];
ans += 1.0*sum/i + 1.0*sum/j;
++l;
--r;
}
if (len & ) {
sum += cnt[r] - cnt[l];
ans += 1.0*sum/i;
}
printf("%.7lf\n", ans); #ifndef ONLINE_JUDGE
printf("%d\n", (int)clock());
#endif return ;
}
【CF】509E Pretty Song的更多相关文章
- 【CF】438E. The Child and Binary Tree
http://codeforces.com/contest/438/problem/E 题意:询问每个点权值在 $c_1, c_2, ..., c_m$ 中,总权值和为 $s$ 的二叉树个数.请给出每 ...
- 【CF】148D Bag of mice
http://codeforces.com/problemset/problem/148/D 题意:w个白b个黑,公主和龙轮流取,公主先取,等概率取到一个.当龙取完后,会等概率跳出一只.(0<= ...
- 【CF】328 D. Super M
这种图论题已经变得简单了... /* D */ #include <iostream> #include <string> #include <map> #incl ...
- 【CF】323 Div2. D. Once Again...
挺有意思的一道题目.考虑长度为n的数组,重复n次,可以得到n*n的最长上升子序列.同理,也可以得到n*n的最长下降子序列.因此,把t分成prefix(上升子序列) + cycle(one intege ...
- 【CF】7 Beta Round D. Palindrome Degree
manacher+dp.其实理解manacher就可以解了,大水题,dp就是dp[i]=dp[i>>1]+1如何满足k-palindrome条件. /* 7D */ #include &l ...
- 【CF】86 B. Petr#
误以为是求满足条件的substring总数(解法是KMP分别以Sbeg和Send作为模式串求解满足条件的position,然后O(n^2)或者O(nlgn)求解).后来发现是求set(all vali ...
- 【CF】121 Div.1 C. Fools and Roads
题意是给定一棵树.同时,给定如下k个查询: 给出任意两点u,v,对u到v的路径所经过的边进行加计数. k个查询后,分别输出各边的计数之和. 思路利用LCA,对cnt[u]++, cnt[v]++,并对 ...
- 【CF】310 Div.1 C. Case of Chocolate
线段树的简单题目,做一个离散化,O(lgn)可以找到id.RE了一晚上,额,后来找到了原因. /* 555C */ #include <iostream> #include <str ...
- 【CF】110 Div.1 B. Suspects
这题目乍眼一看还以为是2-sat.其实很水的,O(n)就解了.枚举每个人,假设其作为凶手.观察是否满足条件.然后再对满足的数目分类讨论,进行求解. /* 156B */ #include <io ...
随机推荐
- eclipse中svn插件的安装
Svn(Subversion)是近年来崛起的版本管理工具,在当前的开源项目里(J2EE),几乎95%以上的项目都用到了SVN.Subversion项目的初衷是为了替换当年开源社区最为流行的版本控制软件 ...
- ubuntu中使用nginx把本地80端口转到其他端口
ubuntu中使用nginx把本地80端口转到其他端口 因为只是在开发的过程中遇到要使用域名的方式访问, 而linux默认把1024以下的端口全部禁用. 在网上找了N多方式开启80端口无果后, 方才想 ...
- C#/.net七牛云存储上传图片(文件)操作
七牛云存储官方: C#SDK(http://developer.qiniu.com/docs/v6/sdk/csharp-sdk.html) 注册成为标准用户就可获得:10GB永久免费存储空间/ 每月 ...
- .net+easyui系列--datagrid
加载CSS <link href="../../Public/easyui/SiteEasy.css" rel="stylesheet" type=&qu ...
- UML图基本类型
use case model用例模型 analysiss model分析模型 design model设计模型 implementation model实现模型 deployment model部署模 ...
- .NET设计模式(4):建造者模式(Builder Pattern)
):建造者模式(Builder Pattern) .建造者模式的使用使得产品的内部表象可以独立的变化.使用建造者模式可以使客户端不必知道产品内部组成的细节. 2.每一个Builder都相对独立, ...
- c语言学习之基础知识点介绍(四):算术运算符和逗号表达式
本节主要介绍c语言中运算符. 运算符主要分为四类: 1.算术运算符 加(+),减(-),乘(*),除(/),取余(%,两数相除,得到余数) 2.关系运算符 3.逻辑运算符 4.换位运算符 下面将依次介 ...
- UITabBar-UITabBarItem图片的背景颜色属性和文字的颜色大小设置
UITabBarItem设置的图片选中状态下默认的是蓝色,如何改变它的颜色为图片自带的颜色呢? typedef NS_ENUM(NSInteger, UIImageRenderingMode) { / ...
- 尝试封装自己的js库
学了js,用过jquery,然后想着让自己在js这一块有更深的提高,就想尝试着封装自己的js库,偶尔就添加自己想到的功能.有参考过其他大牛封装库的方法,不懂的地方也有借鉴过,但代码还是自己想,自己理解 ...
- 数据挖掘学习笔记:挖掘频繁模式、关联和相关[ZZ]
所 谓挖掘频繁模式,关联和相关,即指在出现的数据集中找到一个经常出现的序列模式或者是一个经常出现的数据结构.就像搞CPU设计的人知道,Cache的预 取机制有流预取和指针预取,前者就是发现流模式,即发 ...