Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

Source

【分析】
很不错的数据结构,真的很不错....
跟树状数组有点像..
相比与普通线段树,zkw线段树具有标记永久化,简单好写的特点。
但zkw线段树占用的空间会相对大些,毕竟是2的阶乘...,然后应该不能可持久化吧(别跟我说用可持久化线段树维护可持久化数组....)
这样就不能动态分配内存了。。不过总体来说还是有一定的实用价值...
 /*
宋代陆游
《临安春雨初霁》 世味年来薄似纱,谁令骑马客京华。
小楼一夜听春雨,深巷明朝卖杏花。
矮纸斜行闲作草,晴窗细乳戏分茶。
素衣莫起风尘叹,犹及清明可到家。
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <utility>
#include <iomanip>
#include <string>
#include <cmath>
#include <queue>
#include <assert.h>
#include <map>
#include <ctime>
#include <cstdlib>
#include <stack>
#define LOCAL
const int INF = 0x7fffffff;
const int MAXN = + ;
const int maxnode = ;
using namespace std;
struct Node{
int l, r;
long long sum, d;
}tree[maxnode];
int data[MAXN], M;//M为总结点个数 //初始化线段树
void build(int l, int r){
for (int i = * M - ; i > ; i--){
if (i >= M){
tree[i].sum = data[i - M];
tree[i].l = tree[i].r = (i - M);//叶子节点
}
else {
tree[i].sum = tree[i<<].sum + tree[(i<<)+].sum;
tree[i].l = tree[i<<].l;
tree[i].r = tree[(i<<)+].r;
}
}
}
long long query(int l, int r){
long long sum = ;//sum记录和
int numl = , numr = ;
l += M - ;
r += M + ;
while ((l ^ r) != ){
if (~l&){//l取反,表示l是左节点
sum += tree[l ^ ].sum;
numl += (tree[l ^ ].r - tree[l ^ ].l + );
}
if (r & ){
sum += tree[r ^ ].sum;
numr += (tree[r ^ ].r - tree[r ^ ].l + );
}
l>>=;
r>>=;
//numl,numr使用来记录标记的
sum += numl * tree[l].d;
sum += numr * tree[r].d;
}
for (l >>= ; l > ; l >>= ) sum += (numl + numr) * tree[l].d;
return sum;
} void add(int l, int r, int val){
int numl = , numr = ;
l += M - ;
r += M + ;
while ((l ^ r) != ){
if (~l&){//l取反
tree[l ^ ].d += val;
tree[l ^ ].sum += (tree[l ^ ].r - tree[l ^ ].l + ) * val;
numl += (tree[l ^ ].r - tree[l ^ ].l + );
}
if (r & ){
//更新另一边
tree[r ^ ].d += val;
tree[r ^ ].sum += (tree[r ^ ].r - tree[r ^ ].l + ) * val;
numr += (tree[r ^ ].r - tree[r ^ ].l + );
}
l>>=;
r>>=;
tree[l].sum += numl * val;
tree[r].sum += numr * val;
}
//不要忘了往上更新
for (l >>= ; l > ; l >>= ) tree[l].sum += (numl+numr) * val;
}
int n, m; void init(){
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++) scanf("%d", &data[i]);
M = ;while (M < (n + )) M <<= ;//找到最大的段
build(, M - );
}
void work(){
while (m--){
char str[];
scanf("%s", str);
if (str[] == 'Q'){
int l, r;
scanf("%d%d", &l, &r);
printf("%lld\n", query(l, r));
}
else{
int val, l, r;
scanf("%d%d%d", &l, &r, &val);
if (val != ) add(l, r, val);
}
}
} int main(){ init();
work();
return ;
}

【POJ3468】【zkw线段树】A Simple Problem with Integers的更多相关文章

  1. 线段树---poj3468 A Simple Problem with Integers:成段增减:区间求和

    poj3468 A Simple Problem with Integers 题意:O(-1) 思路:O(-1) 线段树功能:update:成段增减 query:区间求和 Sample Input 1 ...

  2. poj3468 A Simple Problem with Integers (线段树区间最大值)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92127   ...

  3. POJ3468:A Simple Problem with Integers(线段树模板)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 149972 ...

  4. POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)

    A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...

  5. poj 3468:A Simple Problem with Integers(线段树,区间修改求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 58269   ...

  6. POJ3648 A Simple Problem with Integers(线段树之成段更新。入门题)

    A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 53169 Acc ...

  7. POJ 3468 A Simple Problem with Integers(线段树区间更新区间查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92632   ...

  8. poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解

    A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...

  9. Poj 3468-A Simple Problem with Integers 线段树,树状数组

    题目:http://poj.org/problem?id=3468   A Simple Problem with Integers Time Limit: 5000MS   Memory Limit ...

随机推荐

  1. 游戏开发设计模式之对象池模式(unity3d 示例实现)

    前篇:游戏开发设计模式之命令模式(unity3d 示例实现) 博主才学尚浅,难免会有错误,尤其是设计模式这种极富禅意且需要大量经验的东西,如果哪里书写错误或有遗漏,还请各位前辈指正. 原理:从一个固定 ...

  2. [LeetCode] Word Break 解题思路

    Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separa ...

  3. .Net设计模式_单列模式

    理解 博友的经典说法:很多人排队去厕所蹲坑一样,每一次只能让一个人去蹲坑,这是一种通俗的理解. 理论上的理解则为,我们需要写一个类,这个类的作用就是控制,从而保证在整个应用程序的生命周期中,在任何时刻 ...

  4. C#中HashTable的用法示例2

    命名空间 System.Collections 名称 哈希表(Hashtable) 描述 用于处理和表现类似keyvalue的键值对,其中key通常可用来快速查找,同时key是区分大小写:value用 ...

  5. November 4th Week 45th Friday 2016

    Problems are not stop signs, they are guidelines. 问题不是休止符,而是指向标. Most of the problems can be overcom ...

  6. TColorPickerButton组件

    http://files.cnblogs.com/xe2011/VCL_TColorPB12.rar 在DELPHI7中可以正常使用 在DELPHI XE5中 下面会有些问题 安装方法 打开 DELP ...

  7. 经典SQL语句大全之提升

    二.提升 1.说明:复制表(只复制结构,源表名:a 新表名:b) (Access可用)法一:select * into b from a where 1<>1(仅用于SQlServer)法 ...

  8. docker 下 安装rancher 笔记

    sudo yum update 更新系统环境 curl -sSL https://get.docker.com/ | sh 安装最新docker版本 systemctl start docker.se ...

  9. [置顶] JQuery插件学习教程

    这是JQuery其它常用插件的视频教程,包括validate插件,.comet插件等.同时有大量实例项目,如果你是喜欢JQuery的童鞋千万不要错过. 教程的内容有: 1_validate插件(1) ...

  10. Linq中Union与Contact方法用法对比

    文章一开始,我们来看看下面这个简单的实例. 代码片段1: int[] ints1 = { 2, 4, 9, 3, 0, 5, 1, 7 }; int[] ints2 = { 1, 3, 6, 4, 4 ...