最大半连通子图

【问题描述】

一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u—>v 或 v —> u,即对于图中任意两点u,v, 存在一条u到v的有向路径或者从v到u的有向路径。

若满足,则称G’是G的一个导出子图。

若G’是G的导出子图,且G’半连通,则称G’为G的半连通子图。

若G’是G所有半连通子图中包含节点数最多的,则称G’是G的最大半连通子图。

给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。

【输入文件】

第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述。接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。

【输出文件】

应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.

【样例输入】

6 6 20070603

1 2

2 1

1 3

2 4

5 6

6 4

【样例输出】

3

3

【数据规模】

对于20%的数据, N ≤ 18;

对于60%的数据, N ≤ 10000;

对于100%的数据, N ≤ 100000, M ≤ 1000000;

对于100%的数据, X ≤ 108


题解:

首先用Tarjon缩点,去重连边,得到新图,那么题目就变成了求图中最长链及最长链个数

最长链可以直接用拓扑排序

最长链个数用一个类似递推的方法

记录每一个点的方案数

那么当前点的方案数就等于连到此点且满足距离相等的点的方案数之和

最后查找距离等于最长链的点,答案为它们的方案数之和

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = ;
char c = getchar();
while('' > c || c > '') c = getchar();
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x;
}
const int me = ;
int n, m, mo;
int x[me], y[me];
int tot;
int de[me], to[me], fir[me], nex[me];
int ue[me];
int si[me];
inline void Ins(int x, int y)
{
nex[++tot] = fir[x];
fir[x] = tot;
to[tot] = y;
}
int num, top, col;
int ti[me], lo[me], st[me], co[me];
inline void Tarjan(int u)
{
ti[u] = lo[u] = ++num;
st[++top] = u;
for(int i = fir[u]; i; i = nex[i])
{
int v = to[i];
if(!ti[v])
{
Tarjan(v);
lo[u] = min(lo[u], lo[v]);
}
else
if(!co[v])
lo[u] = min(lo[u], ti[v]);
}
if(lo[u] == ti[u])
{
co[u] = ++col;
++si[col];
while(st[top] != u)
{
++si[col];
co[st[top]] = col;
--top;
}
--top;
}
}
int t, w;
int ans;
int e[me];
int dis[me];
inline bool rule(int a, int b)
{
if(x[a] != x[b]) return x[a] < x[b];
return y[a] < y[b];
}
int nu[me];
inline void Remove()
{
for(int i = ; i <= m; ++i)
{
nu[i] = i;
x[i] = co[x[i]];
y[i] = co[y[i]];
}
sort(nu + , nu + + m, rule);
}
inline void Build()
{
tot = ;
memset(fir, , sizeof(fir));
for(int i = ; i <= m; ++i)
{
int z = nu[i];
if((x[z] != y[z]) && (x[z] != x[nu[i - ]] || y[z] != y[nu[i - ]]))
{
++de[y[z]];
Ins(x[z], y[z]);
}
}
}
inline void Reset()
{
for(int i = ; i <= col; ++i)
if(!de[i])
{
ue[++w] = i;
dis[i] = si[i];
e[i] = ;
if(dis[ans] < dis[i]) ans = i;
}
}
inline void Topo()
{
while(t < w)
{
int u = ue[++t];
for(int i = fir[u]; i; i = nex[i])
{
int v = to[i];
--de[v];
if(dis[v] < dis[u] + si[v])
{
dis[v] = dis[u] + si[v];
e[v] = ;
if(dis[ans] < dis[v]) ans = v;
}
if(dis[v] == dis[u] + si[v])
e[v] = (e[v] + e[u]) % mo;
if(!de[v]) ue[++w] = v;
}
}
}
int anss;
inline void Ask()
{
for(int i = ; i <= n; ++i)
if(dis[i] == dis[ans])
anss = (anss + e[i]) % mo;
}
int main()
{
n = Get(), m = Get(), mo = Get();
for(int i = ; i <= m; ++i)
{
x[i] = Get(), y[i] = Get();
Ins(x[i], y[i]);
}
for(int i = ; i <= n; ++i)
if(!ti[i])
Tarjan(i);
Remove();
Build();
Reset();
Topo();
Ask();
printf("%d\n%d", dis[ans], anss);
}

最大半连通子图 bzoj 1093的更多相关文章

  1. BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)

    题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...

  2. bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  3. BZOJ 1093 [ZJOI2007]最大半连通子图

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1986  Solved: 802[Submit][St ...

  4. bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][St ...

  5. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  6. BZOJ 1093 最大半连通子图 题解

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2767  Solved: 1095[Submit][S ...

  7. [BZOJ]1093 最大半连通子图(ZJOI2007)

    挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...

  8. 【刷题】BZOJ 1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...

  9. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

随机推荐

  1. python 入门笔记

    1.pip包安装 pip install *** pip 中http和https代理设置(/etc/profile) 2.强制保存 :w !sudo tee % 3.cffi是python调用C的包 ...

  2. wordpress优化之结合prism.js为编辑器自定义按钮转化代码

    原文链接 http://ymblog.net/2016/07/24/wordpress-prism/ 继昨天花了一天一夜的时间匆匆写了主题Jiameil3.0之后,心中一直在想着优化加速,体验更好,插 ...

  3. C#异步编程

    什么是异步编程 什么是异步编程呢?举个简单的例子: using System.Net.Http; using System.Threading.Tasks; using static System.C ...

  4. Android代码分析工具lint学习

    1 lint简介 1.1 概述 lint是随Android SDK自带的一个静态代码分析工具.它用来对Android工程的源文件进行检查,找出在正确性.安全.性能.可使用性.可访问性及国际化等方面可能 ...

  5. C#开发奇技淫巧三:把dll放在不同的目录让你的程序更整洁

    系列文章 C#开发奇技淫巧一:调试windows系统服务 C#开发奇技淫巧二:根据dll文件加载C++或者Delphi插件 C#开发奇技淫巧三:把dll放在不同的目录让你的程序更整洁 程序目录的整理 ...

  6. PropertyGrid控件由浅入深(二):基础用法

    目录 PropertyGrid控件由浅入深(一):文章大纲 PropertyGrid控件由浅入深(二):基础用法 控件的外观构成 控件的外观构成如下图所示: PropertyGrid控件包含以下几个要 ...

  7. 玩转Windows服务系列——Debug、Release版本的注册和卸载,及其原理

    Windows服务Debug版本 注册 Services.exe -regserver 卸载 Services.exe -unregserver Windows服务Release版本 注册 Servi ...

  8. 使用R画地图数据

    用R画地图数据 首先,从这里下载中国地图的GIS数据,这是一个压缩包,完全解压后包含三个文件(bou2_4p.dbf.bou2_4p.shp和bou2_4p.shx),将这三个文件解压到同一个目录下. ...

  9. Javascript之函数模型

    分析: 对于js自定义函数,函数体的内容大致可抽象为:变量(局部变量,由var关键字定义,全局变量)和函数(一般函数,匿名函数,闭包函数). function SelfDefineFunc() { v ...

  10. (转载)JAVA动态编译--字节代码的操纵

    在一般的Java应用开发过程中,开发人员使用Java的方式比较简单.打开惯用的IDE,编写Java源代码,再利用IDE提供的功能直接运行Java 程序就可以了.这种开发模式背后的过程是:开发人员编写的 ...