最大半连通子图 bzoj 1093
最大半连通子图
【问题描述】
一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u—>v 或 v —> u,即对于图中任意两点u,v, 存在一条u到v的有向路径或者从v到u的有向路径。
若满足,则称G’是G的一个导出子图。
若G’是G的导出子图,且G’半连通,则称G’为G的半连通子图。
若G’是G所有半连通子图中包含节点数最多的,则称G’是G的最大半连通子图。
给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。
【输入文件】
第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述。接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。
【输出文件】
应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.
【样例输入】
6 6 20070603
1 2
2 1
1 3
2 4
5 6
6 4
【样例输出】
3
3
【数据规模】
对于20%的数据, N ≤ 18;
对于60%的数据, N ≤ 10000;
对于100%的数据, N ≤ 100000, M ≤ 1000000;
对于100%的数据, X ≤ 108。
题解:
首先用Tarjon缩点,去重连边,得到新图,那么题目就变成了求图中最长链及最长链个数
最长链可以直接用拓扑排序
最长链个数用一个类似递推的方法
记录每一个点的方案数
那么当前点的方案数就等于连到此点且满足距离相等的点的方案数之和
最后查找距离等于最长链的点,答案为它们的方案数之和
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = ;
char c = getchar();
while('' > c || c > '') c = getchar();
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x;
}
const int me = ;
int n, m, mo;
int x[me], y[me];
int tot;
int de[me], to[me], fir[me], nex[me];
int ue[me];
int si[me];
inline void Ins(int x, int y)
{
nex[++tot] = fir[x];
fir[x] = tot;
to[tot] = y;
}
int num, top, col;
int ti[me], lo[me], st[me], co[me];
inline void Tarjan(int u)
{
ti[u] = lo[u] = ++num;
st[++top] = u;
for(int i = fir[u]; i; i = nex[i])
{
int v = to[i];
if(!ti[v])
{
Tarjan(v);
lo[u] = min(lo[u], lo[v]);
}
else
if(!co[v])
lo[u] = min(lo[u], ti[v]);
}
if(lo[u] == ti[u])
{
co[u] = ++col;
++si[col];
while(st[top] != u)
{
++si[col];
co[st[top]] = col;
--top;
}
--top;
}
}
int t, w;
int ans;
int e[me];
int dis[me];
inline bool rule(int a, int b)
{
if(x[a] != x[b]) return x[a] < x[b];
return y[a] < y[b];
}
int nu[me];
inline void Remove()
{
for(int i = ; i <= m; ++i)
{
nu[i] = i;
x[i] = co[x[i]];
y[i] = co[y[i]];
}
sort(nu + , nu + + m, rule);
}
inline void Build()
{
tot = ;
memset(fir, , sizeof(fir));
for(int i = ; i <= m; ++i)
{
int z = nu[i];
if((x[z] != y[z]) && (x[z] != x[nu[i - ]] || y[z] != y[nu[i - ]]))
{
++de[y[z]];
Ins(x[z], y[z]);
}
}
}
inline void Reset()
{
for(int i = ; i <= col; ++i)
if(!de[i])
{
ue[++w] = i;
dis[i] = si[i];
e[i] = ;
if(dis[ans] < dis[i]) ans = i;
}
}
inline void Topo()
{
while(t < w)
{
int u = ue[++t];
for(int i = fir[u]; i; i = nex[i])
{
int v = to[i];
--de[v];
if(dis[v] < dis[u] + si[v])
{
dis[v] = dis[u] + si[v];
e[v] = ;
if(dis[ans] < dis[v]) ans = v;
}
if(dis[v] == dis[u] + si[v])
e[v] = (e[v] + e[u]) % mo;
if(!de[v]) ue[++w] = v;
}
}
}
int anss;
inline void Ask()
{
for(int i = ; i <= n; ++i)
if(dis[i] == dis[ans])
anss = (anss + e[i]) % mo;
}
int main()
{
n = Get(), m = Get(), mo = Get();
for(int i = ; i <= m; ++i)
{
x[i] = Get(), y[i] = Get();
Ins(x[i], y[i]);
}
for(int i = ; i <= n; ++i)
if(!ti[i])
Tarjan(i);
Remove();
Build();
Reset();
Topo();
Ask();
printf("%d\n%d", dis[ans], anss);
}
最大半连通子图 bzoj 1093的更多相关文章
- BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)
题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- BZOJ 1093 [ZJOI2007]最大半连通子图
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1986 Solved: 802[Submit][St ...
- bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2286 Solved: 897[Submit][St ...
- BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )
WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...
- BZOJ 1093 最大半连通子图 题解
1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2767 Solved: 1095[Submit][S ...
- [BZOJ]1093 最大半连通子图(ZJOI2007)
挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...
- 【刷题】BZOJ 1093 [ZJOI2007]最大半连通子图
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...
- bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
随机推荐
- java设计模式之单例模式(几种写法及比较)
概念: Java中单例模式是一种常见的设计模式,单例模式的写法有好几种,这里主要介绍三种:懒汉式单例.饿汉式单例.登记式单例. 单例模式有以下特点: 1.单例类只能有一个实例. 2.单例类必须自己创建 ...
- 免费公开课,讲解强大的文档集成组件Aspose,现在可报名
课程①:Aspose.Total公开课内容:讲解全能型文档管理工具Aspose.Total主要功能及应用领域时间:2016-11-24 14:30 (暂定)报名地址:http://training.e ...
- 安卓GreenDao框架一些进阶用法整理
大致分为以下几个方面: 一些查询指令整理 使用SQL语句进行特殊查询 检测表字段是否存在 数据库升级 数据库表字段赋初始值 一.查询指令整理 1.链式执行的指令 return mDaoSession. ...
- NDK开发_笔记0
自谷歌搜索退出中国以来,谷歌对全球第二大市场中国的态度一直保持冷淡.可是北京时间12月8日,谷歌2016开发者大会在北京召开,同时专门针对中国的谷歌开发者网站已经上线:https://develope ...
- Atitit.技术管理者要不要自己做开发??
Atitit.技术管理者要不要自己做开发?? 1. 为什么很多管理者不能自己亲自做了1 1.1. 沟通成本多了1 1.2. .组织分散. 1 1.3. 会议多 .协调多 1 1.4. 问题的根源在于我 ...
- iOS7 NavigationController 手势问题
在iOS7中,如果使用了UINavigationController,那么系统自带的附加了一个从屏幕左边缘开始滑动可以实现pop的手势.但是,如果自定义了navigationItem的leftBarB ...
- Nova PhoneGap框架 总结
Nova PhoneGap Framework 是完全针对PhoneGap应用程序量身定做的,在这个框架下开发的应用程序很容易实现高质量的代码,很容易让程序拥有很好的性能和用户体验. 在经历了多个项目 ...
- 创建DbContext
返回总目录<一步一步使用ABP框架搭建正式项目系列教程> 上一篇介绍了<创建实体>,这一篇我们顺其自然地介绍<创建DbContext>. 温故: 提到DbConte ...
- Entity Framework 6 Recipes 2nd Edition(10-6)译 -> TPT继承模型中使用存储过程
10-6. TPT继承模型中使用存储过程 问题 想在一个TPT继承模型中使用存储过程 解决方案 假设已有如Figure 10-6所示模型. 在模型里, Magazine(杂志) and DVD继承于基 ...
- SQL 邮件配置篇
在我们运维工作中,经常要对备份,ETL等作业进行监控,这时我们需要用到SQL SERVER自带的邮件服务器,其原理,我在这么里不多说,直接来实战,下面是我对服务器配置源码,分享给大家,希望对大家有帮助 ...