Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) $ \in$AxBxCxD are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
1

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

题解:不超时最好。。先枚举a,b,然后检查-(c+d)的值,还是二分优化。

AC代码:

#include <algorithm>
#include <iostream>
using namespace std;
const int Max = + ;
int a[Max],b[Max],c[Max],d[Max];
int ab[];
int total;
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=; i<n; i++)
{
cin>>a[i]>>b[i]>>c[i]>>d[i];
}
int k=;
for(int i=;i<n; i++)
{
for(int j=;j<n; j++)
{
ab[k]=a[i]+b[j];
k++;
}
}
sort(ab,ab+k);
total=;
int s,l,r,mid;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
int x=-c[i]-d[j];
l=,r=k-;
while(l<=r)
{
mid=(l+r)/;
if(ab[mid]>x)
r=mid-;
else if(ab[mid]<x)
l=mid+;
else
{
for(s=mid;s>=;s--)
{
if(ab[s]==x)
total++;
else
break;
}
for(s=mid+; s<k; s++)
{
if(ab[s]==x)
total++;
else
break;
}
break;
}
}
}
}
cout<<total<<endl;
if(t>)
cout<<endl;
}
return ;
}

UVA1152 4Values whose Sum is 0的更多相关文章

  1. UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)

    4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...

  2. POJ 2785 4 Values whose Sum is 0(想法题)

    传送门 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 20334   A ...

  3. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

  4. 哈希-4 Values whose Sum is 0 分类: POJ 哈希 2015-08-07 09:51 3人阅读 评论(0) 收藏

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 17875 Accepted: ...

  5. [poj2785]4 Values whose Sum is 0(hash或二分)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...

  6. POJ-2785 4 Values whose Sum is 0(折半枚举 sort + 二分)

    题目链接:http://poj.org/problem?id=2785 题意是给你4个数列.要从每个数列中各取一个数,使得四个数的sum为0,求出这样的组合的情况个数. 其中一个数列有多个相同的数字时 ...

  7. K - 4 Values whose Sum is 0(中途相遇法)

    K - 4 Values whose Sum is 0 Crawling in process... Crawling failed Time Limit:9000MS     Memory Limi ...

  8. lintcode 中等题:Submatrix sum is 0 和为零的子矩阵

    和为零的子矩阵 给定一个整数矩阵,请找出一个子矩阵,使得其数字之和等于0.输出答案时,请返回左上数字和右下数字的坐标. 样例 给定矩阵 [ [1 ,5 ,7], [3 ,7 ,-8], [4 ,-8 ...

  9. UVA1152-4 Values whose Sum is 0(分块)

    Problem UVA1152-4 Values whose Sum is 0 Accept: 794  Submit: 10087Time Limit: 9000 mSec Problem Desc ...

随机推荐

  1. 《University Calculus》-chaper13-多重积分-二重积分的引入

    这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...

  2. Period - HDU 1358(next求循环节)

    题目大意:有一个长N的字符串,如果前缀Ni是一个完全循环的串(循环次数大于1),输出Ni和它循环了多少次.   分析:输入next的应用,求出来next数组直接判断Ni是否是完全的循环就行了,也就是N ...

  3. Rational Rose与UML教程

    在学UML的过程中,Rational Rose的角色无比重要.现在能找到的大多数是2003的,但下面连接是2007. http://blog.csdn.net/skl_TZ/article/detai ...

  4. Android WebView Error – Uncaught TypeError: Cannot call method ‘getItem’ of null at

    本质原因是js 没有判断dom 是否加载完毕 其实就是在dom 加载完毕之后处理事件 wv.getSettings().setDomStorageEnabled(true); 转自 蛙齋  http: ...

  5. IOS中UITableViewCell的重用机制原理

    创建UITableViewController子类的实例后,IDE生成的代码中有如下段落: - (UITableViewCell *)tableView:(UITableView *)tableVie ...

  6. android圆角View实现及不同版本这间的兼容

    在做我们自己的APP的时候,为了让APP看起来更加的好看,我们就需要将我们的自己的View做成圆角的,毕竟主流也是将很多东西做成圆角,和苹果的外观看起来差不多,看起来也还不错. 要将一个View做成圆 ...

  7. 关于 java.util.concurrent 您不知道的 5 件事--转

    第 1 部分 http://www.ibm.com/developerworks/cn/java/j-5things4.html Concurrent Collections 是 Java™ 5 的巨 ...

  8. TCP/IP协议原理与应用笔记09:数据通信---封装

    2016-08-091. 数据通信----封装: 2. 协议数据单元: PDU:对等层数据通信的单元. 比如Source端的应用层 和 Destination端的应用层是对等层(L7),这个时候L7 ...

  9. poj 2679 Adventurous Driving(SPFA 负环)

    /* - - 这题做了一天.....粗心害死人啊 题目描述恶心 数据更恶心... 先处理一下能走的边 能走的点(到这建边从终点跑一下.) 然后就是SPFA了 注意负环的判断 */ #include&l ...

  10. JDK小技巧

    鉴于这段时间重新拾起Android,电脑上又是一大堆不同JDK版本的项目.来回切换JDK环境也够折磨人的. 不同版本JDK切换之后,java -version命令仍然显示的是之前的JDK版本,重启电脑 ...