UVA1152 4Values whose Sum is 0
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) $ \in$AxBxCxD are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
1
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
题解:不超时最好。。先枚举a,b,然后检查-(c+d)的值,还是二分优化。
AC代码:
#include <algorithm>
#include <iostream>
using namespace std;
const int Max = + ;
int a[Max],b[Max],c[Max],d[Max];
int ab[];
int total;
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=; i<n; i++)
{
cin>>a[i]>>b[i]>>c[i]>>d[i];
}
int k=;
for(int i=;i<n; i++)
{
for(int j=;j<n; j++)
{
ab[k]=a[i]+b[j];
k++;
}
}
sort(ab,ab+k);
total=;
int s,l,r,mid;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
int x=-c[i]-d[j];
l=,r=k-;
while(l<=r)
{
mid=(l+r)/;
if(ab[mid]>x)
r=mid-;
else if(ab[mid]<x)
l=mid+;
else
{
for(s=mid;s>=;s--)
{
if(ab[s]==x)
total++;
else
break;
}
for(s=mid+; s<k; s++)
{
if(ab[s]==x)
total++;
else
break;
}
break;
}
}
}
}
cout<<total<<endl;
if(t>)
cout<<endl;
}
return ;
}
UVA1152 4Values whose Sum is 0的更多相关文章
- UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)
4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...
- POJ 2785 4 Values whose Sum is 0(想法题)
传送门 4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 20334 A ...
- POJ 2785 4 Values whose Sum is 0
4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 13069 Accep ...
- 哈希-4 Values whose Sum is 0 分类: POJ 哈希 2015-08-07 09:51 3人阅读 评论(0) 收藏
4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 17875 Accepted: ...
- [poj2785]4 Values whose Sum is 0(hash或二分)
4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...
- POJ-2785 4 Values whose Sum is 0(折半枚举 sort + 二分)
题目链接:http://poj.org/problem?id=2785 题意是给你4个数列.要从每个数列中各取一个数,使得四个数的sum为0,求出这样的组合的情况个数. 其中一个数列有多个相同的数字时 ...
- K - 4 Values whose Sum is 0(中途相遇法)
K - 4 Values whose Sum is 0 Crawling in process... Crawling failed Time Limit:9000MS Memory Limi ...
- lintcode 中等题:Submatrix sum is 0 和为零的子矩阵
和为零的子矩阵 给定一个整数矩阵,请找出一个子矩阵,使得其数字之和等于0.输出答案时,请返回左上数字和右下数字的坐标. 样例 给定矩阵 [ [1 ,5 ,7], [3 ,7 ,-8], [4 ,-8 ...
- UVA1152-4 Values whose Sum is 0(分块)
Problem UVA1152-4 Values whose Sum is 0 Accept: 794 Submit: 10087Time Limit: 9000 mSec Problem Desc ...
随机推荐
- 什么是左值(what is a lvalue)?
引用并翻译自<C++ premier plus> 左值是可以通过地址引用的数据对象(data object),例如,变量,数组的元素,结构体的成员,引用变量,以及复引用的指针(defere ...
- 《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换
承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = d ...
- php数组和字符串转换
PHP 中由于数组和字符串这两种变量类型是如此常用,以至于 PHP 具有两个函数,可以在字符串和数组之间互相进行转换. $array=explode(separator,$string); $stri ...
- OneToMany与ManyToOne的属性
供自己查阅,嫌低级的勿喷! 1.OneToMany的属性 ①targetEntity 定义关系类的类型,默认是该成员属性对应的类类型,所以通常不需要提供定义. ②mappedBy 定义类之间的双向关系 ...
- Java并发学习之二——获取和设置线程信息
本文是学习网络上的文章时的总结,感谢大家无私的分享. Thread类的对象中保存了一些属性信息可以帮助我们辨别每个线程.知道它的一些信息 ID:每一个线程的独特标示: Name:线程的名称: Prio ...
- iOS异步图片加载优化与常用开源库分析
网络图片显示大体步骤: 1.下载图片: 2.图片处理(裁剪,边框等): 3.写入磁盘: 4.从磁盘读取数据到内核缓冲区: 5.从内核缓冲区复制到用户空间(内存级别拷贝): 6.解压缩为位图(耗cpu较 ...
- android anim 动画效果(转)
动画效果编程基础--AnimationAndroid 动画类型 Android的animation由四种类型组成 XML中 alpha 渐变透明度动画效果 ...
- html+css+js实现复选框全选与反选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...
- Linux入门之——安装虚拟机软件
/** ****************************************************************************** * @author 暴走的小 ...
- 转载:C#中&与&&的区别
原文地址:http://www.cnblogs.com/chinafine/archive/2009/02/17/1392309.html 感谢博主分享! 二元运算符 (&) 为整型和 b ...