一道典型的hash问题:

已知a1,a2,a3,a4,a5,求有多少种不同的<x1,x2,x3,x4,x5>组合满足等式:

a1*x1^3 + a2*x2^3 + a3*x3^3 + a4*x4^3 + a5*x5^3 = 0

一种做法是暴力枚举,但因为xi∈[-50,-1)(1,50],所以暴力枚举时间为O(100^5),显然不可行。

所以只能用hash方法:

我们可以讲前两项 a1*x1^3 + a2*x2^3 的所有可能多项式结果SUM运算出来,并将这些SUM映射到hash表上。因为可能存在不同的<x1,x2>元组,但他们的SUM相同,会映射到hash表上相同的indice上,对于这种情况,我们采用hash[<x1,x2>::SUM]++的处理方式,最终hash表上所有indice上hash值不为0的值相加就是前两项所有可能的SUM。同时,因为存在运算结果为负值的情况,(因为ai, xi都∈[-50,-1)(1,50],所以前两项的SUM∈[-12500000,12500000]。为了不让映射的下标为负数,当SUM>=0时,KEY=SUM;当SUM<0时,KEY=SUM+12500000. 同时为了保证所有可能的SUM都能够hash到表上的indice,hash数组的规模需开到25000001.

--------------------------------------------------------------------------------------

然后我们继续枚举下面三项a3*x3^3 + a4*x4^3 + a5*x5^3 的所有可能SUM并求出KEY,

KEY一样采用上面的做法:当SUM>=0时,KEY=SUM;当SUM<0时,KEY=SUM+12500000.

当我们用(-KEY)去查hash表时,如果hash[0-KEY]>0,说明hash表上有记录,也意味着当前枚举的三元组<x3,x4,x5>找到了一个<x1,x2>使得整体的SUM=0,即找到一个方程的解。统计解的个数即为最终结果。

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<map>
#include<vector>
using namespace std;
const int max_size=;
short hsh[max_size];
int a1,a2,a3,a4,a5,ans;
int main(){
scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5);
ans=;
memset(hsh,,sizeof(hsh));
for(int i=-;i<=;i++){
if(!i) continue;
for(int j=-;j<=;j++){
if(!j) continue;
int sum=;
for(int k=-;k<=;k++){
if(!k) continue;
sum=(-)*(i*i*i*a1+j*j*j*a2+k*k*k*a3);
if(sum<) sum+=max_size;
hsh[sum]++;
}
}
}
for(int i=-;i<=;i++){
if(!i) continue;
int sum=;
for(int j=-;j<=;j++){
if(!j) continue;
sum=i*i*i*a4+j*j*j*a5;
if(sum<) sum+=max_size;
if(hsh[sum]) ans+=hsh[sum];
}
}
printf("%d\n",ans);
}

POJ1840: Eqs(hash问题)的更多相关文章

  1. poj1840 Eqs(hash+折半枚举)

    Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...

  2. POJ1840 Eqs

    题意描述 Eqs 求一个五元方程 \(a_1x_1^3+a_2x_2^3+a_3x_3^3+a_4x_4^3+a_5x_5^3=0\) 的解的个数. 题中给出 \(a_i\) 的值并且保证 \(-50 ...

  3. POJ 1840 Eqs(hash)

    题意  输入a1,a2,a3,a4,a5  求有多少种不同的x1,x2,x3,x4,x5序列使得等式成立   a,x取值在-50到50之间 直接暴力的话肯定会超时的   100的五次方  10e了都 ...

  4. POJ 1840 Eqs 二分+map/hash

    Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...

  5. poj 1840 Eqs (hash)

    题目:http://poj.org/problem?id=1840 题解:http://blog.csdn.net/lyy289065406/article/details/6647387 小优姐讲的 ...

  6. POJ1840 hash

    POJ1840 问题重述: 给定系数a1,a2, ..,a5,求满足a1 * x1 ^ 3 + a2 * x2 ^ 3 +... + a5 * x5 ^ 3 = 0的 xi 的组数.其中ai, xi都 ...

  7. Eqs - poj 1840(hash)

    题意:对于方程:a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 ,有xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 现在给出a1,a2,a3, ...

  8. Eqs(枚举+ hash)

    http://poj.org/problem?id=1840 题意:给出系数a1,a2,a3,a4,a5,求满足方程的解有多少组. 思路:有a1x13+ a2x23+ a3x33+ a4x43+ a5 ...

  9. POJ 1840 Eqs

    Eqs Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 15010   Accepted: 7366 Description ...

随机推荐

  1. 六,WPF的Application类

    Application.ShutdownMode属性:通过,只要有一个窗口还没有关闭,Application类就保持应用程序处于有效状态,如果这不是所期望的行为,就可以调整该属性. 应用程序事件 Ap ...

  2. Custome Buble Data Point

    <navigation:Page xmlns:toolkit="http://schemas.microsoft.com/winfx/2006/xaml/presentation/to ...

  3. Java EJX

    EJX http://www.docin.com/p-121548732.html

  4. 认识基本的UI资源

    什么是UI精灵(Sprite) 在制作UI时,经常将一些零碎的小的UI资源(比如,一个小箭头,一个按钮等)打包成一张大图,然后在使用时,只使用这个大图中的一部分,那么这一块"被切出来&quo ...

  5. 仿今日头条最强顶部导航指示器,支持6种模式-b

    项目中经常会用到类似今日头条中顶部的导航指示器,我也经常用一个类似的库PagerSlidingTabStrip,但是有时并不能小伙伴们的所有需求,所以我在这个类的基础上就所有能用到的情况做了一个简单的 ...

  6. java连接mysql数据库(jsp显示和控制台显示)

           很多事情,在我们没有做之前我们觉得好难,但是只要你静下心来,毕竟这些都是人搞出来的,只要你是人,那就一定可以明白. 配置:JDK1.8,MySQL5.7,eclipse:Neon Rel ...

  7. [转载]MongoDB开发学习(2)索引的基本操作

    索引能够极大的提高查询的效率.在数据库中简历索引必不可少. 在MongoDB中可以很轻松的创建索引. 默认索引_id_ 开启MongoDB服务器,创建数据库cnblogs,创建集合Users .(关于 ...

  8. public void Delete(List EntityList) where T : class, new()类型参数约束

    查找后发现这是类型参数约束,.NET支持的类型参数约束有以下五种: where T : struct | T必须是一个结构类型 where T : class T必须是一个类(class)类型 whe ...

  9. mysql通过frm+ibd文件还原data

    此方法只适合innodb_file_per_table          = 1 当误删除ibdata 该怎么办? 如下步骤即可恢复: 1.准备工作 1)准备一台纯洁的mysql环境[从启动到现在没有 ...

  10. Altium Designer中默认取消重复画线的选项