题目大意

给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b

题解

GCD(a,b)=G

GCD(a/G,b/G)=1

LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G

这样的话我们只要对L/G进行质因数分解,找出最接近√(L/G)的因子p,最终结果就是a=p*G,b=L/p,对(L/G)就是套用Miller–Rabin和Pollard's rho了,刚开始Pollard's rho用的函数也是

f(x)=x^2+1,然后死循环了。。。。改成f(x)=x^2+c(c<=181)就OK了

代码:

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<math.h>
#include<algorithm>
#define MAXN 100000
using namespace std;
typedef unsigned long long LL;
LL fac[MAXN],cnt,G,L,m,p;
LL min(LL a,LL b)
{
return a<b?a:b;
}
LL gcd(LL a,LL b)
{
return b==0?a:gcd(b,a%b);
}
LL mult_mod(LL a,LL b,LL mod)
{
LL ans=0;
while(b)
{
if(b&1)
ans=(ans+a)%mod;
a=(a<<1)%mod;
b>>=1;
}
return ans;
}
LL pow_mod(LL a,LL b,LL mod)
{
LL d=1;
a%=mod;
while(b)
{
if(b&1)
d=mult_mod(d,a,mod);
a=mult_mod(a,a,mod);
b>>=1;
}
return d%mod;
}
bool witness(LL a,LL n)
{
LL u=n-1,t=0;
while((u&1)==0)
{
u>>=1;
t++;
}
LL x,x0=pow_mod(a,u,n);
for(LL i=1; i<=t; i++)
{
x=mult_mod(x0,x0,n);
if(x==1&&x0!=1&&x0!=(n-1))
return true;
x0=x;
}
if(x!=1)
return true;
return false;
}
bool miller_rabin(LL n)
{
if(n==2) return true;
if(n<2||!(n&1)) return false;
for(int j=1; j<=8; j++)
{
LL a=rand()%(n-1)+1;
if(witness(a,n))
return false;
}
return true;
}
LL pollard_rho(LL n,LL c)
{
LL i=1,k=2,d,x=2,y=2;
while(true)
{
i++;
x=(mult_mod(x,x,n)+c)%n;
d=gcd(y-x,n);
if(d!=1&&d!=n)
return d;
if(x==y) return n;
if(i==k)
{
y=x;
k<<=1;
}
}
}
void find_fac(LL n,LL c)
{
if(miller_rabin(n)||n<=1)
{
fac[cnt++]=n;
return;
}
LL p=pollard_rho(n,c);
while(p>=n) p=pollard_rho(p,c--);
find_fac(p,c);
find_fac(n/p,c);
}
void dfs( LL step,LL num)
{
if(step==cnt||num>p)
{
if(num<=p&&num>m)
m=num;
return;
}
dfs(step+1,num*fac[step]);
dfs(step+1,num);
}
int main()
{
srand(time(NULL));
while(scanf("%I64u%I64u",&G,&L)!=EOF)
{
cnt=0;
find_fac(L/G,181);
sort(fac,fac+cnt);
LL i=0,t=0;
while(i<cnt)
{
LL ans=1,j=i;
while(j<cnt&&fac[i]==fac[j])
{
ans*=fac[i];
j++;
}
fac[t++]=ans;
i=j;
}
cnt=t,m=1,p=sqrt(0.0+(L/G));
dfs(0,1);
printf("%I64u %I64u\n",m*G,L/m);
}
return 0;
}

POJ2429 - GCD & LCM Inverse(Miller–Rabin+Pollard's rho)的更多相关文章

  1. POJ2429 GCD & LCM Inverse pollard_rho大整数分解

    Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and t ...

  2. POJ1811- Prime Test(Miller–Rabin+Pollard's rho)

    题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...

  3. 数学基础IV 欧拉函数 Miller Rabin Pollard's rho 欧拉定理 行列式

    找了一些曾经没提到的算法.这应该是数学基础系最后一篇. 曾经的文章: 数学基础I 莫比乌斯反演I 莫比乌斯反演II 数学基础II 生成函数 数学基础III 博弈论 容斥原理(hidden) 线性基(h ...

  4. 【Pollard-rho算法】【DFS】poj2429 GCD & LCM Inverse

    题意:给你一两个数m和n,它们分别是某对数A,B的gcd和lcm,让你求出一对使得A+B最小的A,B. n/m的所有质因子中,一定有一部分是只在A中的,另一部分是只在B中的. 于是对n/m质因子分解后 ...

  5. poj2429 GCD & LCM Inverse

    用miller_rabin 和 pollard_rho对大数因式分解,再用dfs寻找答案即可. http://poj.org/problem?id=2429 #include <cstdio&g ...

  6. [POJ 2429] GCD & LCM Inverse

    GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10621   Accepted: ...

  7. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  8. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

  9. POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)

    [题目链接] http://poj.org/problem?id=2429 [题目大意] 给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小 [题解] 我们发现,(x/gcd)*(y/gcd) ...

随机推荐

  1. 关于Qt5 UI设计的一些小知识

      (1) 获取textEdit中的值   QString str = ui->textedit->toPlainText(); // 这是普通文本 p=str.toInt();     ...

  2. UML_时序图画法

    UML建模之时序图(Sequence Diagram) 一.时序图简介(Brief introduction) 二.时序图元素(Sequence Diagram Elements) 角色(Actor) ...

  3. 上传项目到Github

    1.使用根工具(均是图形化的界面) TortoiseGit-1.8.12.0-32bit GitExtensions-2.48.05-SetupComplete 2.大致步骤 首先,你需要一个Gith ...

  4. xrange和range区别

    range和xrange这两个函数基本都是在循环的时候使用的. >>> for x in range(10,21,1): ... print x ... 10 11 12 13 14 ...

  5. 安装完QQ必须要删除掉的几个恐怖文件

    安装完QQ必须要删除掉的几个恐怖文件 感谢 QQ很可怕 的投递 很多关注自己电脑硬件温度的朋友,一般都懂得去查看什么进程占用CPU较高,可能发现过有这么几个进程的CPU占用会有时莫名其妙的非常之高,它 ...

  6. 关于table的一些兼容性问题

    不多说,先来看两个常用的简单效果 ---- 兼容拼比一(普通边线效果) 图一:谷歌.火狐.ie8+下 图二:ie6/7下 从图中看出,ie6/7其实是不认识tr边框线的,,所以平时做项目时候,我们一般 ...

  7. unity 引入 ios 第三方sdk

    原地址:http://blog.csdn.net/u012085988/article/details/17785023 unity开发中ios应用时,要想成功引入第三方sdk,首先得知道c#与obj ...

  8. easyui源码翻译1.32--Draggable(拖动)

    前言 使用$.fn.draggable.defaults重写默认值对象.下载该插件翻译源码 源码 /** * jQuery EasyUI 1.3.2 * *翻译:qq 1364386878 --拖动 ...

  9. UAC新解(有非正常手段可以绕过)

    360第一次注册是需要弹,可是以后就不弹了开机自启动不弹框,开机自启动不弹框 服务是system权限再说一句,一般程序也不需要过UAC系统启动项白名单.UAC有一个白名单机制.还有UAC也可以通过wu ...

  10. Tomcat 6.0下配置HTTPS

    最近项目需要使用到https,所以回顾整理了一下,其实在tomcat的文档中已经有了详细描述,我们启动Tomcat后,可以在docs文档中找到 地址如下:http://localhost:8080/d ...