组合数

组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数。

求解方式

求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\right) !}$

性质1:$C^{m}_{n}=C_{n}^{n-m}$

性质2:$C^{m}_{n}=C^{m-1}_{n-1}-i+C^{m}_{n-1}$

打表递推

根据性质2:$C^{m}_{n}=C^{m-1}_{n-1}+C^{m}_{n-1}$

组合数算出来特别大,往往都会要求取余,这里取$P=1e9+7$。时间复杂度$O(n^2)$

;
#define N 1000
int comb[N][N];

int main() {
    ; i < N; i++) {
        comb[i][] = comb[i][i] = ;
        ; j < i; j++) {
            comb[i][j] = comb[i - ][j] + comb[i - ][j - ];
            comb[i][j] %= P;
            //cout << comb[i][j] << endl;
        }
    }
}

逆元法

因为大部分题都有求余,可利用逆元的原理(没求余的题目,自己找一个比较大的素数作为P,也可以用逆元做)

线性递推求逆元

当$p$为质数时有$a^{-1}=(p-[p/a])\cdot (p\%a)^{-1}\%p$

求阶乘的逆元

根据通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\right) !}$,有$C^{m}_{n}=n!\cdot inv[m!] \cdot inv[(n-m)!]$

设 $finv(i)=inv(i\ !)$

则根据:$finv(i-1)=\frac{1}{\ (i-1)\ !}=\frac{1}{i\ !}\times i =finv(i)\times i$

有:$finv(i) = finv(i-1)\times inv(i)$

详见:数论篇4——逆元(数论倒数)

初始化时间复杂度$O(n)$,求$C^{m}_{n}$为$O(1)$

;
;
], Finv[N+], inv[N+];//fact是阶乘,Finv是阶乘的逆元
void init() {
    inv[] = ;
    //线性递推求逆元
    ; i <= N; i++) {
        inv[i] = (P - P / i) * 1ll * inv[P % i] % P;
    }
    fact[] = Finv[] = ;
    ; i < N; i++) {
        fact[i] = fact[i - ] * 1ll * i % P;//求阶乘
        Finv[i] = Finv[i - ] * 1ll * inv[i] % P;//求阶乘的逆元
    }
}
int C(int n, int m) {//comb(n, m)就是C(n, m)
     || m > n) ;
    return fact[n] * 1ll * Finv[n - m] % P * Finv[m] % P;
}

卢卡斯定理

现在有了新问题,如果$n$和$m$非常大,$p$为素数,比如求$C_n^m \% p \ ,\ n\leqslant 10^{18},m\leqslant 10^{18},p\leqslant 10^{9}$

$C_n^m\ \%\ p  =  C(n / p, m / p) * C(n\ \%\ p, m\ \%\ p)\ \%\  p$

或者写成这样更准确$Lucas(n,m)\ \%\ p=Lucas(n/p,m/p)*C(n\ \%\ p,m\ \%\ p)\ \%\ p$

证明请看此 lucas_百度百科,没仔细看证明,所以对不对我也不知道。

写成递归,代码就这么短:

LL Lucas(LL n, LL m, int p){
         ;
}

具体C的实现要看情况。

P较小时,打表

typedef long long ll;
const int N = 1e5 ;
;//取一个小于N的素数
ll fact[P + ], inv[P + ], Finv[P + ];//阶乘打表

void init() {
    inv[] = ;
    //线性递推求逆元
    ; i <= P; i++) {
        inv[i] = (P - P / i) * 1ll * inv[P % i] % P;
    }
    fact[] = Finv[] = ;
    ; i < P; i++) {
        fact[i] = fact[i - ] * 1ll * i % P;//求阶乘
        Finv[i] = Finv[i - ] * 1ll * inv[i] % P;//求阶乘的逆元
    }
}

ll C(ll n, ll m){//组合数C(n, m) % p
    ;
    return fact[n] * Finv[n - m] % P * Finv[m] % P;
}
ll Lucas(ll n, ll m){
    ;
}

P较大时,没法打表,用快速幂算逆元

typedef long long ll;

const int N = 1e9 ;
;

ll quickPower(ll a, ll b) {
    ll res = ;
    a %= P;
    while (b) {
        )res = (res % P) * (a % P) % P;
        a = (a % P) * (a % P) % P;
        b >>= ;
    }
    return res;
}
ll inv(ll x) {//x关于p的逆元,p为素数
    );
}
ll C(ll n, ll m) {
    ;
    ll up = , down = ;//分子分母;
    ; i <= n; i++)
        up = up * i % P;
    ; i <= m; i++)
        down = down * i % P;
    return up * inv(down) % P;
}
ll Lucas(ll n, ll m) {
    );
    return C(n % P, m % P) * Lucas(n / P, m / P) % P;
}

数论篇7——组合数 & 卢卡斯定理(Lucas)的更多相关文章

  1. 卢卡斯定理Lucas

    卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...

  2. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

  3. ACM数论之旅10---大组合数-卢卡斯定理(在下卢卡斯,你是我的Master吗?(。-`ω´-) )

    记得前几章的组合数吧 我们学了O(n^2)的做法,加上逆元,我们又会了O(n)的做法 现在来了新问题,如果n和m很大呢, 比如求C(n, m) % p  , n<=1e18,m<=1e18 ...

  4. 卢卡斯定理 Lucas (p为素数)

    证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...

  5. 洛谷.3807.[模板]卢卡斯定理(Lucas)

    题目链接 Lucas定理 日常水题...sublime和C++字体死活不同步怎么办... //想错int范围了...不要被longlong坑 //这个范围现算阶乘比预处理快得多 #include &l ...

  6. CRT中国剩余定理 & Lucas卢卡斯定理

    数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...

  7. 【数论】卢卡斯定理模板 洛谷P3807

    [数论]卢卡斯定理模板 洛谷P3807 >>>>题目 [题目] https://www.luogu.org/problemnew/show/P3807 [输入格式] 第一行一个 ...

  8. 【Luogu3807】【模板】卢卡斯定理(数论)

    题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...

  9. 【UOJ#275】组合数问题(卢卡斯定理,动态规划)

    [UOJ#275]组合数问题(卢卡斯定理,动态规划) 题面 UOJ 题解 数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑. 发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情 ...

随机推荐

  1. Gamma阶段第十次scrum meeting

    每日任务内容 队员 昨日完成任务 明日要完成的任务 张圆宁 #91 用户体验与优化https://github.com/rRetr0Git/rateMyCourse/issues/91(持续完成) # ...

  2. UE4命令行参数解析

    转自:https://blog.csdn.net/u012999985/article/details/53544389 一 .命令行参数简述命令行参数是一连串的关键字字符串,当运行可执行文件时可以通 ...

  3. TaskTimer

    什么是调度 任务:就是事情 调度:在不同的时间点或者在指定的时间点或者间隔多长时间去运行这个任务.就是生活中的闹钟 相关的类Timer 类:位于 java.util 包中 案例 实现时间的动态刷新 任 ...

  4. Typescript 学习 - 类

    class class 并不是一种新的数据结构,只是在函数原型基础上的语法糖 class People { hand: number; constructor(hand: number) { this ...

  5. Android启动脚本init.rc说明文档readme.txt翻译

    Android Init Language--------------------- Android初始化语言--------------------- The Android Init Langua ...

  6. [原创]K8Cscan4.0之Base64/HEX密码批量加密解密插件以及源码

    前言 今天抽空更新了Cscan,新增对C#编译的EXE动态调用,新增对PowerShell脚本动态调用(无论是否安装PowerShell) 增加一个字符串列表str.txt,用于存放任意字符串,比如帐 ...

  7. linux -------------- Linux系统安装jdk

    linux 安装软件有三种方式  tar (解压安装 ) rpm (直接安装) yum(在线) 安装主要步邹 1.下载jdk 软件包 2.检测是否安装 查看已安装jdk软件包 rpm -qa|grep ...

  8. KAFKA 节点配置问题

    -- ::, INFO o.a.j.e.StandardJMeterEngine: Running the test! -- ::, INFO o.a.j.s.SampleEvent: List of ...

  9. myeclipse导入项目中文乱码怎么解决教程

    大家在Myeclipse导入项目的时候,应该都遇见过一些乱码的问题,不单单只是Myeclipse有这个问题,那么怎么解决Myeclipse导入项目乱码的问题呢,问题出现的原因是什么呢,下面来看看答案. ...

  10. SQL系列(十一)—— 函数(function)

    SQL中的函数也非常多,而且不同的DBMS提供了相应的特殊函数.但是常用的共性函数大致可以分为以下几种: 函数类型 函数 数值函数 1.算术计算:+.-.*./ 2.数值处理:ABS()绝对值处理.P ...