传送门


我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\)。这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\)分开做。

当\(i>j\)时,\(f_i = \max\limits_{j=1}^{i-1}(a_j + \sqrt{i-j})\)。注意到这是一个典型的\(f_i = \max\limits_{j=1}^{i-1}f_j + w(i,j)\)的形式,考虑决策单调性。不难证明\(\sqrt{x + 1} - \sqrt{x} < \sqrt{x} - \sqrt{x - 1}\),故对于决策点\(p<q , \sqrt{i+1-p} - \sqrt{i-p} < \sqrt{i+1-q} - \sqrt{i-q}\),也就是说\(w(i+1,p) - w(i,p) < w(i+1,q) - w(i,q)\),满足四边形不等式。

那么可以按照传统的方法,在队列中维护决策三元组\((x,l,r)\)表示当\(i \in [l,r]\)时,\(f_i = f_x + \sqrt{i-x}\),每加入一个新的决策时在队尾弹出被当前决策代替的决策,然后在最后一个有效决策的范围上二分得到当前决策的范围。当有询问时直接拿出队头的答案即可。

代码

LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP的更多相关文章

  1. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  2. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  3. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  4. BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

    BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...

  5. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  6. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  7. 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)

    洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...

  8. bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...

  9. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

随机推荐

  1. 过拟合产生的原因(Root of Overfitting)

    之前在<过拟合和欠拟合(Over fitting & Under fitting)>一文中简要地介绍了过拟合现象,现在来详细地分析一下过拟合产生的原因以及相应的解决办法. 过拟合产 ...

  2. Generating a Random Sample from discrete probability distribution

    If is a discrete random variable taking on values , then we can write . Implementation of this formu ...

  3. iphone中input按钮设置disabled属性出现灰色背景没有显示问题

    在项目中发现发送验证码的按钮,在点击后添加disabled属性后,iphone手机中出现disabled属性的默认背景颜色没有显示,反而直接显示它下面的父级元素的白色 点击前 点击后 倒计时的按钮消失 ...

  4. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

  5. mysql 提示ssl问题

    问题信息如下: rements SSL connection must be established by default if explicit option isn't set. For comp ...

  6. ICEM-哑铃(无厚度)

    原视频下载地址:https://pan.baidu.com/s/1i44hdkh 密码: 96dh

  7. CentOS7 通过systemd 添加开机重启服务

    现在越来越多的环境采用 CentOS 7 作为基础配置,特别是 Hadoop生态 如果要测试或部署环境需要启动很多组件(zookeeper.kafka.redis等等),如下内容是在操作系统层实现开机 ...

  8. hdoj - 1248 寒冰王座

    Problem Description 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票(记住,只有一张钞票),为了防止自己在战斗中频繁的死掉,他决定给自己买一些道具,于是他来到了地精商店前.死亡骑 ...

  9. 网络营销CPA、CPS、CPM、CPT、CPC 是什么

    网络营销之所以越来越受到重视一个主要的原因就是因为“精准”.相比较传统媒体的陈旧广告形式,网络营销能为广告主带来更为确切的效果与回报,更有传统媒体所没有的即时互动性.很多企业借助于精准的网络营销成为人 ...

  10. 从Linux服务器下载文件夹到本地

    从Linux服务器下载文件夹到本地 1.使用scp命令 scp /home/work/source.txt work@192.168.0.10:/home/work/ #把本地的source.txt文 ...