题目描述

真的是个很棘手的操作。。

注意每删除一个点,就需要clear一次。

#include<complex>
#include<cstdio>
using namespace std;
const int N=3e5+;
int n,m,rot,add;
//add记录所有节点增加的权值
int q[N<<];
inline int qread()
{
int x=,j=;
char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')j=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*j;
}
struct Leftist
{
int fat[N],son[N][],key[N],dis[N],mark[N];
void clear(int x)
{
fat[x]=son[x][]=son[x][]=;
}
void PushDown(int x)
{
if(!mark[x])return;
if(son[x][])
{
key[son[x][]]+=mark[x];
mark[son[x][]]+=mark[x];
}
if(son[x][])
{
key[son[x][]]+=mark[x];
mark[son[x][]]+=mark[x];
}
mark[x]=;
}
int Merge(int a,int b)
{
if(!a || !b)return a+b;
if(key[a]<key[b])swap(a,b);
PushDown(a);
son[a][]=Merge(son[a][],b);
fat[son[a][]]=a;
if(dis[son[a][]]>dis[son[a][]])swap(son[a][],son[a][]);
dis[a]=dis[son[a][]]+;
return a;
}
int Sum(int x)
{
int res=;
while(x=fat[x])res+=mark[x];
return res;
}
int Top(int x)
{
while(fat[x])x=fat[x];
return x;
}
int Pop(int x)
{
PushDown(x);
int q=fat[x],p=Merge(son[x][],son[x][]);
if(q)son[q][son[q][]==x]=p;
fat[p]=q;
while(q)
{
if(dis[son[q][]]>dis[son[q][]])
swap(son[q][],son[q][]);
if(dis[q]==dis[son[q][]]+)return rot;
dis[q]=dis[son[q][]]+;
p=q;q=fat[q];
}
return p;
}
int AddPoint(int x,int v)
{
int t=Top(x);
if(t==x)
if(!son[x][] && !son[x][])
{
key[x]+=v;
return x;
}
else
if(son[x][])t=son[x][];
else t=son[x][];
Pop(x);
key[x]+=v+Sum(x);
clear(x);
return Merge(Top(t),x);
}
int Build()
{
int head=,tail=;
for(int i=;i<=n;i++)
q[++tail]=i;
int x,y;
while(tail-head)
{
x=q[head++];y=q[head++];
q[++tail]=Merge(x,y);
}
return q[head];
}
}t1,t2;
//对于F3操作,需要把所有堆的根拿出来建一个新的堆
//新开一棵t2来维护这些点
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
t1.key[i]=t2.key[i]=qread();
rot=t2.Build();
char c[];int x,y,r1,r2;
scanf("%d",&m);
while(m--)
{
scanf("%s",c);
if(c[]=='U')
{
x=qread();y=qread();
r1=t1.Top(x);r2=t1.Top(y);
if(r1!=r2)
{
int tmp=t1.Merge(r1,r2);
if(tmp==r1)t2.Pop(r2);
else t2.Pop(r1);
/*
合并时,若树a并到了b上,则将a从第二棵树中删除,反之则删除b
被删去的点还是可能会成为最大值的,可它已经被删除了....
它再次成为最大值只有可能是在A1操作,将它再插入就好了
*/
}
}
else if(c[]=='A' && c[]=='')
{
x=qread();y=qread();
rot=t2.Pop(t1.Top(x));
int tmp=t1.AddPoint(x,y);
t2.key[tmp]=t1.key[tmp];
t2.clear(tmp);
rot=t2.Merge(rot,tmp);
}
else if(c[]=='A' && c[]=='')
{
x=qread();y=qread();
r1=t1.Top(x);
rot=t2.Pop(r1);
//整个联通块都+y,不影响堆的性质,但mark不能及时下传,所以仍要把根删去后再插入
t1.key[r1]+=y;t1.mark[r1]+=y;
t2.key[r1]=t1.key[r1];
t2.clear(r1);
rot=t2.Merge(r1,rot);
}
else if(c[]=='A' && c[]=='')add+=qread();
else if(c[]=='F' && c[]=='')
{
x=qread();
printf("%d\n",t1.key[x]+add+t1.Sum(x));
}
else if(c[]=='F' && c[]=='')
{
x=qread();
printf("%d\n",t1.key[t1.Top(x)]+add);
}
else printf("%d\n",t2.key[rot]+add);
}
return ;
}

BZOJ 2333: [SCOI2011]棘手的操作的更多相关文章

  1. BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...

  2. BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2333 ..题意概述就不写了,各位老爷如果是看着玩的可以去搜一下,如果是做题找来的也知道题干 ...

  3. bzoj 2333 [SCOI2011]棘手的操作 —— 可并堆

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2333 稍微复杂,参考了博客:http://hzwer.com/5780.html 用 set ...

  4. BZOJ 2333 [SCOI2011]棘手的操作 (可并堆)

    码农题.. 很显然除了两个全局操作都能用可并堆完成 全局最大值用个multiset记录,每次合并时搞一搞就行了 注意使用multiset删除元素时 如果直接delete一个值,会把和这个值相同的所有元 ...

  5. 2333: [SCOI2011]棘手的操作[写不出来]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1979  Solved: 772[Submit][Stat ...

  6. 2333: [SCOI2011]棘手的操作[离线线段树]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2325  Solved: 909[Submit][Stat ...

  7. 2333: [SCOI2011]棘手的操作[我不玩了]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1979  Solved: 772[Submit][Stat ...

  8. 【BZOJ】2333: [SCOI2011]棘手的操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=2333 题意: 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i], ...

  9. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

随机推荐

  1. Luogu4707 重返现世 min-max容斥、DP

    传送门 kthMinMax的唯一模板? 首先你需要知道kth Min-Max定理的内容:\(kthmax(S) = \sum\limits_{T \subseteq S} (-1)^{|T| - k} ...

  2. java 获取手机归属地,引起net.UnknownHostException错误

    这个问题是请求,重定向了,跟入源码.修改了地址,变成302 Connection connect = Jsoup.connect(url); connect.header("Host&quo ...

  3. python逻辑编程之kanren

    https://github.com/logpy/logpy https://pypi.org/project/kanren/ https://www.yiibai.com/ai_with_pytho ...

  4. UML回顾暨课程总结

    本文作为OO的最后一次博客作业,主要回顾了第四单元的架构设计和本学期的心路历程. 本单元架构设计 UML1 ​ 第一次作业的主要内容是解析mdj格式输入,记录特定数据并支持针对类.属性和方法等的查询功 ...

  5. drf安装与APIView初步分析

    drf安装 1. pip install djangorestframework 2. 在settings文件中注册app : INSTALLED_APPS = [..., 'rest_framewo ...

  6. js两个变量互换值

    js两个变量交换值 这个问题看似很基础,但是有很多的实现方式,你知道的有多少呢,网上也有很多的方法,下面就来总结一下 中间变量(临时变量) 临时变量其实很好理解,通过一个中间变量进行交换值 var s ...

  7. Jmeter学习笔记(九)——响应断言

    Jmeter中又一个元件叫断言,用于检查测试中得到的响应数据等是否符合预期.断言又13种,目前在使用过程中使用到的是响应断言. 有时候请求成功了并不代表测试通过,还要看影响返回的内容是否符合预期的结果 ...

  8. ..\USER\stm32f10x.h(428): error: #67: expected a "}" ADC1_2_IRQn = 18, /*!

    MDK软件编译,出现如下错误: ..\USER\stm32f10x.h(428): error: #67: expected a "}" ADC1_2_IRQn = 18, /*! ...

  9. Linux多IP配置

    # ifconfig eth0:1 172.168.1.222

  10. Redis持久化小结

    RDB RDB持久化方式是通过快照(snapshotting)完成的,当符合一定条件时,Redis将内存中所有数据以二进制方式生成一份副本并存储在硬盘上. 触发机制 save命令:阻塞当前Redis服 ...