Codevs 1482 路线统计(矩阵乘法)
1482 路线统计
时间限制: 1 s
空间限制: 256000 KB
题目等级 : 钻石 Diamond
题目描述 Description
N个节点的有向图, 求从start到finish刚好经过时间time的总方案数 mod 502630.
输入描述 Input Description
第一行包含一个整数n, 所有点是从0到N-1编号.
接下来n行,每行包含n个字符. 第i行第j个字符表示i到j需要的时间. 字符只可能是’1’到’5’, 或者是’.’表示i不能到达j. 保证主对角线都是’.’.
接下来一行3个整数start, finish, time.
输出描述 Output Description
输出总方案数.
样例输入 Sample Input
3
.12
2.1
12.
0 2 5
样例输出 Sample Output
8
数据范围及提示 Data Size & Hint
对于20%的数据, 输入的字符不是’1’就是’.’;
对于100%的数据, 1 <= n <= 10; 1 <= start,finish <= n; 1 <= time <= 10^9.
分类标签 Tags
矩阵乘法 数论
/*
矩阵乘法.
没想出来 唉.
比较神奇.
t为1的话直接矩阵乘法.
but 这题1<=t<=5啊.
这样的话我们考虑拆点.
拆成这样i1->i2->i3->i4->i5.
然后对于it(第t个点)连一条边到j.
这样我们每条边的长度就都是1啦.
然后就可以转移啦.
*/
#include<iostream>
#include<cstdio>
#define MAXN 101
#define LL long long
#define mod 502630
using namespace std;
int n,m,s,t,k;
LL ans[MAXN][MAXN],b[MAXN][MAXN],c[MAXN][MAXN];
void mi()
{
while(k)
{
if(k&1)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j])%mod;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j])%mod;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
b[i][j]=c[i][j],c[i][j]=0;
k>>=1;
}
}
int main()
{
char ch;
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<5;j++)
ans[i+(j-1)*n][i+j*n]=b[i+(j-1)*n][i+j*n]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
cin>>ch;
int x=int(ch-48);
if(ch!='.') ans[i+(x-1)*n][j]=b[i+(x-1)*n][j]=1;
}
scanf("%d%d%d",&s,&t,&k);
s++,t++;k--;
n*=6;
mi();
cout<<ans[s][t];
return 0;
}
Codevs 1482 路线统计(矩阵乘法)的更多相关文章
- [codevs 1482]路线统计(矩阵乘法)
题目:http://codevs.cn/problem/1482/ 分析:很像“经过K条边的最短路径条数”.但有所不同,那就是不是边数固定,而是路径总长度固定.看似不能用矩阵乘法了……但注意到每条边的 ...
- codevs 3332 数列 (矩阵乘法)
/* 裸地矩阵乘法 矩阵很好想的 1 1 0 0 0 1 1 0 0 */ #include<iostream> #include<cstring> #include<c ...
- Codevs 1070 普通递归关系(矩阵乘法)
1070 普通递归关系 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 考虑以下定义在非负整数n上的递归关系 f(n) = f0 ...
- 路线统计(codevs 1482)
题目描述 Description N个节点的有向图, 求从start到finish刚好经过时间time的总方案数 mod 502630. 输入描述 Input Description 第一行包含一个整 ...
- 矩阵乘法快速幂 codevs 1250 Fibonacci数列
codevs 1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1 ...
- Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)
1287 矩阵乘法 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 小明最近在为线性代数而头疼, ...
- Codevs No.3147 矩阵乘法2
2016-06-01 17:33:30 题目链接: 矩阵乘法2 (Codevs No.3147) 题目大意: 给定两个大小相同的正方形矩阵A,B.多次询问,每次求乘后矩阵的一个子矩阵所有元素的和. 解 ...
- Codevs No.1287 矩阵乘法
2016-06-01 16:53:23 题目链接: 矩阵乘法 (Codevs No.1287) 题目大意: 给你两个可乘矩阵a,b,求a*b 解法: 定义....... //矩阵乘法 (Codevs ...
- 矩阵乘法 codevs 1287 矩阵乘法
1287 矩阵乘法 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 小明最近在为线性代数而头疼,线性代数确实很抽象 ...
随机推荐
- LOJ3146 APIO2019路灯(cdq分治+树状数组)
每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...
- GitHub Action一键部署配置,值得拥有
最近由于自己的个人应用增加,每次都需要在服务器手动发布,觉得特别麻烦,所以想通过代码控制自动发布,直接选择了GitHub Action. GitHub Action持续集成服务,目前已经免费开放使用, ...
- 前端开发 Vue Vue.js和Nodejs的关系
首先vue.js 是库,不是框架,不是框架,不是框架. Vue.js 使用了基于 HTML 的模版语法,允许开发者声明式地将 DOM 绑定至底层 Vue 实例的数据. Vue.js 的核心是一个允许你 ...
- 【转载】C#中List集合使用Exists方法判断是否存在符合条件的元素对象
在C#的List集合操作中,有时候需要根据条件判断List集合中是否存在符合条件的元素对象,此时就可以使用List集合的扩展方法Exists方法来实现,Exists方法的签名为bool Exists( ...
- python day6 装饰器补充,正则表达式
目录 python day 6 1. 装饰器decorator 2. 正则表达式re 2.1 正则表达式概述 2.2 re模块常用方法 python day 6 2019/10/09 学习资料来自老男 ...
- group by 和 order by 的区别 + 理解过程
order by 和 group by 的区别order by 和 group by 的区别:1,order by 从英文里理解就是行的排序方式,默认的为升序. order by 后面必须列出排序的字 ...
- js 数组 数组 最大值、最小值 算法(转载)
一:https://www.cnblogs.com/zhouyangla/p/8482010.html 1.排序法 首先我们给数组进行排序,可以按照从小到大的顺序来排,排序之后的数组中第一个和最后一个 ...
- shell脚本4种执行方式
Linux中shell脚本的执行通常有4种方式,分别为工作目录执行,绝对路径执行,sh执行,shell环境执行. 首先,看下我们的脚本内容 [tan@tan scripts]$ ll total -r ...
- excel将一个工作表根据条件拆分成多个sheet工作表与合并多个sheet工作表
本例介绍在excel中如何将一个工作表根据条件拆分成多个工作表. 注意:很多朋友反映sheets(i).delete这句代码出错,要注意下面第一个步骤,要拆分的数据工作表名称为“数据源”, 而不是你新 ...
- python 全局声明 global
https://www.cnblogs.com/Lin-Yi/p/7305364.html 在基本的python语法当中,一个函数可以随意读取全局数据,但是要修改全局数据的时候有两种方法:1 glob ...