传送门

\(A\)

什么玩意儿……

const char t[]={"0CODEFESTIVAL2016"};
char s[25];int res;
int main(){
scanf("%s",s+1);
fp(i,1,16)res+=s[i]!=t[i];
printf("%d\n",res);
return 0;
}

\(B\)

什么玩意儿……

const int N=1e5+5;
char s[N];int a,b,n,c,cc;
int main(){
scanf("%d%d%d%s",&n,&a,&b,s+1),a+=b;
fp(i,1,n){
switch(s[i]){
case 'c':puts("No");break;
case 'a':puts(c+1<=a?(++c,"Yes"):"No");break;
case 'b':puts(c+1<=a&&cc+1<=b?(++c,++cc,"Yes"):"No");break;
}
}
return 0;
}

\(C\)

显然需要连成一棵树,且贪心选取边来连接,如果当前连的边是左右连接的,且上下连接的边总共连了\(c\)条,那么说明每一列只有\(m+1-c\)个连通块了,那么当前边只需要连这么多条

//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
typedef long long ll;
const int N=5e5+5;
ll res;int a[N],op[N],id[N],top,n,m,c,d;
inline bool cmp(const int &x,const int &y){return a[x]<a[y];}
int main(){
scanf("%d%d",&n,&m);
fp(i,1,n)++top,scanf("%d",&a[top]),op[top]=0,id[top]=top;
fp(i,1,m)++top,scanf("%d",&a[top]),op[top]=1,id[top]=top;
sort(id+1,id+1+top,cmp);
fp(i,1,top){
// printf("%d %d %d\n",id[i],a[id[i]],op[id[i]]);
if(!op[id[i]])res+=1ll*a[id[i]]*(m+1-d),++c;
else res+=1ll*a[id[i]]*(n+1-c),++d;
}
printf("%lld\n",res);
return 0;
}

\(D\)

还是贪心,一个贪心是先处理完前面再处理完后面,一个贪心是对于每一个点选择可以卖给他的价格最小的物品卖,记前\(i-1\)个人中剩余钱数最多的人钱数为\(mn\),那么卖给第\(i\)个人的商品价格就是\(mn+1\),如果\(a_i=mn+1\)就一个都买不了,并且\(++mn\),否则我们贪心卖到至少还有一元钱剩余就行了

然而有一种情况是第\(i\)个人还剩下恰好\(mn+1\)元,根据贪心期间肯定是不让\(mn\)增加最优,那么我们肯定可以在之前得到某一次卖的商品价格\(+1\),这样就不会令\(mn\)增加了

//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
typedef long long ll;
const int N=5e5+5,inf=0x3f3f3f3f;
ll res;int a[N],n,mn;
int main(){
scanf("%d",&n);
fp(i,1,n)scanf("%d",&a[i]);
res=a[1]-1,mn=1;
fp(i,2,n){
if(a[i]==mn+1)++mn;
else res+=(a[i]-1)/(mn+1);
}
printf("%lld\n",res);
return 0;
}

\(E\)

首先考虑一个暴力的想法,先把所有的串扔到\(trie\)树里,然后对于询问直接在\(trie\)树上匹配这个串,同时把所有字典序小于当前转移的子树里的串的个数加入答案

这样显然要挂掉,而且我们也不可能\(26!\)枚举所有字母的大小

设\(i,j\)为两个不同的转移,考虑到\(i\)这个转移会对\(j\)的子树造成贡献,当且仅当重定义之后的字母中\(i<j\),也就是说会对答案造成影响的总共只有\(26\times 26\)种状态

那么我们对于\(trie\)树上的每一个节点,记录一个\(cnt[p][i]\),表示当处于节点\(p\),且状态为\(i\)(\(i\)表示一种大小关系,假设它表示\(a<b\),也就是说\(a\)这个字母字典序比\(b\)小),此时按照暴力匹配之后的贡献是多少,即从根节点走到\(p\)的过程中如果转移是\(b\)就加上\(a\)那棵子树的\(size\),那么\(cnt[p][i]\)表示那些\(size\)的和

这样对于一个询问,直接枚举所有的大小关系并加上对应的贡献即可

复杂度\(O((n+q)26^2)\)

具体细节可以参考代码

//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int N=5e5+5,M=676;
char t[N];int sz[N],size[N],pos[N],fa[N],ch[N][26];
int id[N],bg[N],len[N],pi[26],n,q,nd;
vector<int>cnt[N];
void ins(R int ID,R int len){
R int p=0;
for(R int i=1,c;i<=len;++i){
c=t[i]-'a';
if(!ch[p][c])ch[p][c]=++nd;
p=ch[p][c],++sz[p];
}
id[p]=ID,pos[ID]=p;
}
void dfs(int p,int ga,int s){
fa[p]=ga;if(ga==-1)cnt[p].resize(M),fa[p]=p;
if(id[p])++s,size[id[p]]=s;
R int cp=0;fp(i,0,25)cp+=(ch[p][i]!=0);
ga=fa[p];if(cp>1)ga=-1;
fp(i,0,25)if(ch[p][i])dfs(ch[p][i],ga,s);
}
void dd(int p,int ga){
if(p&&fa[p]==p)fp(i,0,M-1)cnt[p][i]+=cnt[ga][i];
fp(i,0,25)if(ch[p][i])fp(j,i+1,25)if(ch[p][j]){
cnt[ch[p][i]][j*26+i]+=sz[ch[p][j]];
cnt[ch[p][j]][i*26+j]+=sz[ch[p][i]];
}
fp(i,0,25)if(ch[p][i])dd(ch[p][i],fa[p]);
}
int solve(int k){
R int res=size[k];
fp(i,0,25)fp(j,i+1,25)res+=cnt[fa[pos[k]]][pi[i]*26+pi[j]];
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);
fp(i,1,n)scanf("%s",t+1),len[i]=strlen(t+1),ins(i,len[i]);
dfs(0,-1,0);dd(0,-1);
scanf("%d",&q);
for(R int k;q;--q){
scanf("%d%s",&k,t+1);
fp(i,1,26)pi[i-1]=t[i]-'a';
printf("%d\n",solve(k));
}
return 0;
}

CODE FESTIVAL 2016 qual B题解的更多相关文章

  1. CODE FESTIVAL 2016 qual C题解

    传送门 \(A\) 什么玩意儿-- const int N=105; char s[N];int n,f1,f2; int main(){ scanf("%s",s+1),n=st ...

  2. CODE FESTIVAL 2016 qual A题解

    传送门 不知道为什么\(AGC\)系列的题里突然多了这些--那就做吧-- \(A\) 什么玩意儿-- upd:因为没看到最后要加换行居然没有\(1A\)好气哦-- const int N=15; ch ...

  3. 【AtCoder】CODE FESTIVAL 2016 qual B

    CODE FESTIVAL 2016 qual B A - Signboard -- #include <bits/stdc++.h> #define fi first #define s ...

  4. 【AtCoder】CODE FESTIVAL 2016 qual A

    CODE FESTIVAL 2016 qual A A - CODEFESTIVAL 2016 -- #include <bits/stdc++.h> #define fi first # ...

  5. 【AtCoder】CODE FESTIVAL 2016 qual C

    CODE FESTIVAL 2016 qual C A - CF -- #include <bits/stdc++.h> #define fi first #define se secon ...

  6. Atcoder CODE FESTIVAL 2016 qual C 的E题 Encyclopedia of Permutations

    题意: 对于一个长度为n的排列P,如果P在所有长度为n的排列中,按照字典序排列后,在第s位,则P的value为s 现在给出一个长度为n的排列P,P有一些位置确定了,另外一些位置为0,表示不确定. 现在 ...

  7. CODE FESTIVAL 2017 qual A 题解

    补一发A的题解. A - Snuke's favorite YAKINIKU 题意: 输入字符串S,如果以YAKI开头输出Yes,否则输出No. #include<bits/stdc++.h&g ...

  8. CODE FESTIVAL 2016 Grand Final 题解

    传送门 越学觉得自己越蠢--这场除了\(A\)之外一道都不会-- \(A\) 贪心从左往右扫,能匹配就匹配就好了 //quming #include<bits/stdc++.h> #def ...

  9. CODE FESTIVAL 2017 qual B 题解

    失踪人口回归.撒花\^o^/ 说来真是惭愧,NOI之后就没怎么刷过题,就写了几道集训队作业题,打了几场比赛还烂的不行,atcoder至今是蓝名=.= 以后还是多更一些博客吧,我可不想清华集训的时候就退 ...

随机推荐

  1. java 堆 排序学习

    /** * <html> * <body> * <P> Copyright 1994 JsonInternational</p> * <p> ...

  2. 树莓派Raspbian系统格式化挂载硬盘

    1.查看树莓派系统挂载的储存设备 使用工具查看系统识别到的硬盘设备,命令: fdisk -l /dev/sda 和 /dev/sdb  分别是两块硬盘. 2.修改硬盘分区 Linux和windows一 ...

  3. idea: unable to import maven project

    新搭建的maven环境,使用idea创建maven项目时,一直提示 unable to import maven project,百度良久未解决 有说关闭防火前的,亲测无效,后看到说是maven-3. ...

  4. 【转载】C#中List集合使用RemoveAt方法移除指定索引位置的元素

    在C#的List集合操作中,移除集合中的元素可以使用Remove方法,不过Remove方法的参数为具体的List集合中的元素,其实还可以使用List集合的RemoveAt方法来移除List集合中的元素 ...

  5. 【转载】 C#使用Math.Round方法对计算结果进行四舍五入操作

    在C#的数值运算中,有时候需要对计算结果进行四舍五入操作,此时就可使用内置方法Math.Round方法来实现四舍五入操作,Math.Round方法有多个重载函数,支持设置有效位数进行四舍五入,如果没有 ...

  6. iOS 10.0前的Notification推送

    前言 推送为远程推送,一般由苹果APNS服务器发送给苹果设备(iPhone,iPad) 推送分在前台和后台.在前台时 用户可以在application 的代理回调接口中做相应处理:在后台时 系统会全权 ...

  7. 【JUC】4.Synchronized与ReentrantLock对比

    与synchronized相同,ReentrantLock也是一种互斥锁: synchronized与ReentrantLock的对比: 都是可重入锁 可以再次获取自己的内部锁,即:一个线程获取某对象 ...

  8. 写Shell脚本自动生成首行

    送给经常写shell脚本的兄弟们常写shell脚本的时候,大家一定都有困扰,怎么样能让.sh文件的表头自己生成,不用我们自己去敲呢 首先我们要编写一下/etc/vimrc执行 vim /etc/vim ...

  9. docker-compose设置mysql初始化数据库的字符集

    version: '3' services: mysql: image: mysql:5.7.24# volumes:# - ./mysqld.cnf:/etc/mysql/mysql.conf.d/ ...

  10. CentOS7- ABRT has detected 1 problem(s). For more info run: abrt-cli list --since 1548988705

    CentOS7重启后,xshell连接,后出现ABRT has detected 1 problem(s). For more info run: abrt-cli list --since 1548 ...